# Supporting Information 

## Reversible photoluminescence switching behavior and luminescence thermochromism of copper (I) halide cluster coordination polymers

Guang Zeng, Shanghua Xing, Xu Han, Bingjing Xin, Yulin Yang, Xiuru Wang, Guanghua Li,* Zhan Shi, and Shouhua Feng

## Synthesis of 4-Aza-1-azoniabicyclo[2.2.2]octane, 1,1'-(1,4-butanediyl)bis-,dibromide (L)

Ligand ( $\mathbf{L}$ ) is synthesized by adopting the procedure reported Asim Bhaumik et.al with slight modifications ${ }^{[1]}$. Diazobicyclo[2,2,2] octane ( $90.0 \mathrm{mmol}, 10 \mathrm{~g}$ ) was dissolved in 200 mL acetone under vigorous stirring. Then 1, 4-Dibromobutane ( $20.0 \mathrm{mmol}, 4.32 \mathrm{~g}$ ) was added dropwise and the reaction was carried out at room temperature for 36 h . at last the white solid was filtered, washed with acetone and ethyl acetate.

[1] M. Sasidharan a, A. Bhaumik, Phys. Chem. Chem. Phys, 2011, 13, 16282-16294.

Table S1. Selected bond lengths ( $\AA$ ) in 1 and 2 at two different temperatures (K).

| Bond | 1 (298K) | 1 (120K) |
| :---: | :---: | :---: |
| $\mathrm{I}(1)-\mathrm{Cu}(2) \# 1$ | 2.6879(13) | 2.6859(11) |
| $\mathrm{I}(1)-\mathrm{Cu}(2)$ | $2.6879(13)$ | 2.6859(11) |
| $\mathrm{I}(1)-\mathrm{Cu}(1)$ | $2.7589(19)$ | 2.7286 (15) |
| $\mathrm{I}(2)-\mathrm{Cu}(2)$ | $2.5935(11)$ | 2.5894(10) |
| $\mathrm{I}(2)-\mathrm{Cu}(1)$ | 2.7037(10) | 2.6987(8) |
| $\mathrm{I}(3)-\mathrm{Cu}(2) \# 2$ | $2.6832(14)$ | 2.6809(12) |
| $\mathrm{I}(3)-\mathrm{Cu}(2) \# 3$ | 2.6832(14) | 2.6809(12) |
| $\mathrm{I}(3)-\mathrm{Cu}(1)$ | $2.7609(18)$ | $2.7530(14)$ |
| $\mathrm{Cu}(1)-\mathrm{I}(2) \# 1$ | 2.7037(10) | 2.6987(8) |
| $\mathrm{Cu}(1)-\mathrm{Cu}(2)$ | $2.7641(17)$ | 2.7384(14) |
| $\mathrm{Cu}(1)-\mathrm{Cu}(2) \# 1$ | 2.7641(17) | 2.7384(14) |
| $\mathrm{Cu}(2)-\mathrm{N}(2)$ | 2.124(5) | 2.121 (5) |
| $\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 1$ | 2.5747(17) | $2.5625(16)$ |
| $\mathrm{Cu}(2)-\mathrm{I}(3) \# 4$ | 2.6832(13) | 2.6809(12) |

Symmetry codes: \#1 -x+1/2,y,z; \#2 x,y-1/2,z+1/2; \#3-x+1/2,y-1/2,z+1/2; \#4 x,y+1/2,z-1/2
\#5-x+1,-y+2,z; \#6-x+1,-y+1,z

| Bond | 2 (298K) | 2 (120K) |
| :---: | :---: | :---: |
| $\mathrm{I}(1)-\mathrm{Cu}(2)$ | 2.656(2) | 2.6397(19) |
| $\mathrm{I}(1)-\mathrm{Cu}(3)$ | 2.730 (3) | 2.716(2) |
| $\mathrm{I}(1)-\mathrm{Cu}(1)$ | 2.796 (3) | 2.775 (2) |
| I(2)-Cu(2) | $2.615(2)$ | $2.6180(19)$ |
| $\mathrm{I}(2)-\mathrm{Cu}(1)$ | 2.711(3) | $2.696(2)$ |
| $\mathrm{I}(3)-\mathrm{Cu}(3)$ | 2.628(3) | 2.628(2) |
| $\mathrm{I}(3)-\mathrm{Cu}(1)$ | 2.642(3) | $2.636(2)$ |
| $\operatorname{Br}(1)-\mathrm{Cu}(2)$ | 2.594(3) | $2.580(2)$ |
| $\operatorname{Br}(1)-\mathrm{Cu}(1) \# 1$ | 2.627(3) | 2.629(2) |
| $\operatorname{Br}(1)-\mathrm{Cu}(3)$ | 2.628(3) | 2.631(2) |
| $\mathrm{Cu}(1)-\mathrm{Cu}(2)$ | 2.621(3) | 2.587(2) |
| $\mathrm{Cu}(1)-\mathrm{Br}(1) \# 2$ | 2.627(3) | 2.629(2) |
| $\mathrm{Cu}(1)-\mathrm{Cu}(3)$ | 2.689(3) | 2.652(2) |
| $\mathrm{Cu}(2)-\mathrm{N}(2)$ | 2.129(13) | 2.111(12) |
| $\mathrm{Cu}(2)-\mathrm{Cu}(3)$ | 2.672(3) | 2.654(3) |
| $\mathrm{Cu}(3)-\mathrm{N}(3)$ | 2.07(2) | 2.004(12) |
| Symmetry codes: | \#1-x+1/2,y-1/2,z; \#2-x+1/2,y+1/2,z; | \#3 -x,-y,-z |

Table S2. Comparison of bond lengths ( $\AA$ ) changing in the cooper (I) halide cluster of compound 1 and 2 at two different temperatures (K).

| Bond | 1 (298K) | 1 (120K) | $\Delta_{\text {bond length }}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{I}(1)-\mathrm{Cu}(2) \# 1$ | 2.6879(13) | 2.6859(11) | 0.002 |
| $\mathrm{I}(1)-\mathrm{Cu}(2)$ | 2.6879(13) | 2.6859(11) | 0.002 |
| $\mathrm{I}(1)-\mathrm{Cu}(1)$ | 2.7589(19) | $2.7286(15)$ | 0.0303 |
| $\mathrm{I}(2)-\mathrm{Cu}(2)$ | $2.5935(11)$ | 2.5894(10) | 0.0041 |
| $\mathrm{I}(2)-\mathrm{Cu}(1)$ | $2.7037(10)$ | 2.6987(8) | 0.005 |
| I(3)-Cu(2)\#2 | 2.6832(14) | 2.6809(12) | 0.0023 |
| I(3)-Cu(2)\#3 | 2.6832(14) | 2.6809(12) | 0.0023 |
| $\mathrm{I}(3)-\mathrm{Cu}(1)$ | 2.7609(18) | $2.7530(14)$ | 0.0079 |
| $\mathrm{Cu}(1)-\mathrm{I}(2) \# 1$ | $2.7037(10)$ | 2.6987(8) | 0.005 |
| $\mathrm{Cu}(2)-\mathrm{I}(3) \# 4$ | 2.6832(13) | 2.6809(12) | 0.0023 |
| $\mathrm{Cu}(1)-\mathrm{Cu}(2)$ | 2.7641(17) | 2.7384(14) | 0.0257 |
| $\mathrm{Cu}(1)-\mathrm{Cu}(2) \# 1$ | 2.7641(17) | 2.7384(14) | 0.0257 |
| $\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 1$ | 2.5747(17) | $2.5625(16)$ | 0.0122 |
| Bond | 2 (298K) | 2 (120K) | $\Delta_{\text {bond length }}$ |
| $\mathrm{I}(1)-\mathrm{Cu}(2)$ | 2.656(2) | 2.6397(19) | 0.0163 |
| $\mathrm{I}(1)-\mathrm{Cu}(3)$ | 2.730 (3) | 2.716(2) | 0.014 |
| $\mathrm{I}(1)-\mathrm{Cu}(1)$ | 2.796(3) | 2.775(2) | 0.021 |
| $\mathrm{I}(2)-\mathrm{Cu}(2)$ | 2.615(2) | $2.6180(19)$ | -0.003 |
| I(2)-Cu(1) | 2.711(3) | 2.696(2) | 0.015 |
| I(3)-Cu(3) | 2.628(3) | 2.628(2) | 0 |
| $\mathrm{I}(3)-\mathrm{Cu}(1)$ | 2.642(3) | 2.636(2) | 0.006 |


| $\mathbf{B r}(\mathbf{1}) \mathbf{- C u}(\mathbf{2})$ | $2.594(3)$ | $2.580(2)$ | 0.014 |
| :--- | :--- | :--- | :--- |
| $\mathbf{B r}(\mathbf{1}) \mathbf{- C u}(\mathbf{1}) \# \mathbf{1}$ | $2.627(3)$ | $2.629(2)$ | $\mathbf{- 0 . 0 0 2}$ |
| $\mathbf{B r}(\mathbf{1}) \mathbf{- C u}(\mathbf{3})$ | $2.628(3)$ | $2.631(2)$ | $\mathbf{- 0 . 0 0 3}$ |
| $\mathbf{C u}(\mathbf{1}) \mathbf{- B r}(\mathbf{1}) \# \mathbf{2}$ | $2.627(3)$ | $2.629(2)$ | $\mathbf{- 0 . 0 0 2}$ |
| $\mathbf{C u}(\mathbf{1}) \mathbf{- C u ( 2 )}$ | $2.621(3)$ | $2.587(2)$ | 0.034 |
| $\mathbf{C u}(\mathbf{1}) \mathbf{- C u ( 3 )}$ | $2.689(3)$ | $2.652(2)$ | 0.037 |



Figure S1. The XRD patterns of sample 1.


Figure S2. The XRD patterns for sample $\mathbf{2}$ and 2a: a) sample 2; b) sample 2a; c) sample 2a immersed in $\mathrm{CH}_{3} \mathrm{CN}$ for 24 h ; (d) simulated


Figure S3. The TG of sample $\mathbf{1}$ and $\mathbf{2}$. The first sharp mass loss of sample $\mathbf{2}$ is about $4.42 \%$ at 240 ${ }^{\circ} \mathrm{C}$ (calc 4.93\%).


Figure S4. The IR spectra of sample $\mathbf{1}$


Figure S5. The IR spectra of sample $\mathbf{2}$ and $\mathbf{2 a} ; 1$ ) sample 2; 2) sample 2a; 3) sample 2a immersed in $\mathrm{CH}_{3} \mathrm{CN}$ for 24 h .


Figure S6. (a) The emission spectra of compound $\mathbf{1}$ under different excitation. (b) Corresponding emission peak position of each excitation.


Figure S7. Corresponding calculated CIE coordinate of $\mathbf{2}$ and 2a at room temperature.

Table S3. Pattern Indexing Results of 2a\#

| fm fn P | P R C | S.G.(\#) |  | a | b | c | $<\alpha>$ | $<\beta>$ | $<\gamma\rangle$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $32 \quad 24$ | 03 O | Pbca (61) |  | 14.256 | 13.807 | 20.027 | 90.0 | 90.0 | 90.0 | 3942.2 |
| (a) 2T(o) | ( h k l) | ) $2 \mathrm{~T}(\mathrm{c})$ | Delta | d(c) | d(o) | Del-d | I\% | \% |  |  |
| [] 8.938 | ( 002 ) | 8.824 | -0.115 | 10.0135 | 9.8851 | 0.1285 | 5.6 |  |  |  |
| [ ] ----- | ( 1111 ) | 9.944 | --- | 8.8880 | --- | --- |  |  |  |  |
| [] 10.713 | ( 102 ) | 10.788 | 0.075 | 8.1942 | 8.2513 | -0.0571 | 32.9 |  |  |  |
| [] 12.438 | ( 200 ) | 12.407 | -0.031 | 7.1282 | 7.1107 | 0.0175 | 14.2 |  |  |  |
| [ ] ----- | ( 112 ) | 12.551 | --- | 7.0467 | --- | --- |  |  |  |  |
| [] 12.815 | ( 020 ) | 12.812 | -0.003 | 6.9037 | 6.9021 | 0.0016 | 25.5 |  |  |  |
| [ ] ----- | ( 0211 ) | 13.556 | --- | 6.5268 | --- | --- |  |  |  |  |
| [] 13.985 | ( 210 ) | 13.970 | -0.015 | 6.3339 | 6.3272 | 0.0067 | 5.1 |  |  |  |
| [ ] ----- | ( 2111$)$ | 14.656 | --- | 6.0391 | --- | --- |  |  |  |  |
| [ ] ----- | ( 121 ) | 14.916 | --- | 5.9344 | --- | --- |  |  |  |  |
| [ ] ----- | ( 202 ) | 15.245 | --- | 5.8071 | --- | --- |  |  |  |  |
| [ ] ----- | ( 022 2) | 15.578 | --- | 5.6838 | --- | --- |  |  |  |  |
| [ ] ----- | (113) | 15.990 | --- | 5.5381 | --- | --- |  |  |  |  |
| [] 16.541 | ( 2112 ) | 16.547 | 0.006 | 5.3530 | 5.3547 | -0.0018 | 27.4 |  |  |  |
| [ ] ----- | (122) | 16.778 | --- | 5.2797 | --- | --- |  |  |  |  |
| [] 17.542 | ( 004 ) | 17.700 | 0.158 | 5.0068 | 5.0514 | -0.0446 | 17.7 |  |  |  |
| [] 17.840 | ( 220 ) | 17.871 | 0.032 | 4.9591 | 4.9679 | -0.0088 | 31.2 |  |  |  |
| [] 18.300 | ( 221 ) | 18.416 | 0.116 | 4.8137 | 4.8439 | -0.0302 | 23.1 |  |  |  |
| [ ] ----- | ( 023 ) | 18.473 | --- | 4.7990 | --- | --- |  |  |  |  |
| [] 18.831 | ( 104 ) | 18.769 | -0.062 | 4.7239 | 4.7085 | 0.0154 | 5.4 |  |  |  |
| [ ] ----- | ( 213 ) | 19.301 | --- | 4.5948 | --- | --- |  |  |  |  |
| [ ] ----- | (123) | 19.501 | --- | 4.5482 | --- | --- |  |  |  |  |
| [ ] ----- | (114) | 19.848 | --- | 4.4696 | --- | --- |  |  |  |  |
| [ ] ----- | ( 222 ) | 19.963 | --- | 4.4440 | --- | --- |  |  |  |  |
| [ ] ----- | ( 3111 ) | 20.237 | --- | 4.3844 | --- | --- |  |  |  |  |
| [ ] 20.598 | ( 302 ) | 20.672 | 0.073 | 4.2932 | 4.3083 | -0.0151 | 13.5 |  |  |  |
| [ ] ----- | ( 1311 ) | 20.742 | --- | 4.2787 | --- | --- |  |  |  |  |
| [ ] 21.642 | ( 312 ) | 21.659 | 0.017 | 4.0996 | 4.1028 | -0.0032 | 13.8 |  |  |  |
| [ ] ----- | ( 204 ) | 21.673 | --- | 4.0971 | --- | --- |  |  |  |  |
| [ ] ----- | ( 024 ) | 21.911 | --- | 4.0531 | --- | --- |  |  |  |  |
| [ ] 22.062 | ( 132 ) | 22.134 | 0.072 | 4.0128 | 4.0257 | -0.0128 | 53.5 |  |  |  |
| [ ] ----- | ( 2223 ) | 22.314 | --- | 3.9809 | --- | --- |  |  |  |  |
| [ ] 22.499 | ( 214 ) | 22.619 | 0.120 | 3.9278 | 3.9485 | -0.0207 | 46.5 |  |  |  |
| [ ] ----- | ( 124 ) | 22.791 | --- | 3.8986 | --- | --- |  |  |  |  |
| [ ] 22.942 | ( 230 ) | 22.982 | 0.041 | 3.8665 | 3.8733 | -0.0067 | 16.1 |  |  |  |
| [ ] ----- | ( 3211 ) | 23.133 | --- | 3.8417 | --- | --- |  |  |  |  |
| [ ] ----- | ( 231 1) | 23.413 | --- | 3.7964 | --- | --- |  |  |  |  |
| [ ] ----- | ( 313 ) | 23.851 | --- | 3.7277 | --- | --- |  |  |  |  |
| [ ] 23.900 | ( 115 ) | 23.940 | 0.040 | 3.7140 | 3.7201 | -0.0061 | 32.9 |  |  |  |
| [ ] ----- | (133) | 24.285 | --- | 3.6620 | --- | --- |  |  |  |  |
| [ ] 24.478 | ( 322 ) | 24.395 | -0.083 | 3.6458 | 3.6335 | 0.0122 | 22.8 |  |  |  |
| [ ] ----- | ( 232 ) | 24.661 | --- | 3.6070 | --- | --- |  |  |  |  |


| [ ] 25.035 | ( 400 ) | 24.963 | -0.073 | 3.5641 | 3.5539 | 0.0102 | 22.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [ ] ----- | ( 224 ) | 25.256 | --- | 3.5234 | --- | --- |  |
| [ ] 25.580 | ( 025 ) | 25.692 | 0.112 | 3.4645 | 3.4794 | -0.0149 | 100.0 |
| [ ] ----- | ( 040 ) | 25.788 | --- | 3.4518 | --- | --- |  |
| [ ] ----- | ( 410 ) | 25.795 | --- | 3.4510 | --- | --- |  |
| [ ] ----- | ( 304 ) | 25.827 | --- | 3.4468 | --- | --- |  |
| [ ] 26.175 | ( 041 ) | 26.175 | 0.001 | 3.4017 | 3.4018 | -0.0001 | 11.0 |
| [ ] ----- | ( 4111$)$ | 26.182 | --- | 3.4009 | --- | --- |  |
| [ ] ----- | ( 215 ) | 26.304 | --- | 3.3853 | --- | --- |  |
| [ ] ----- | ( 323 ) | 26.372 | --- | 3.3767 | --- | --- |  |
| [ ] ----- | ( 125 ) | 26.453 | --- | 3.3665 | --- | --- |  |
| [ ] 26.536 | ( 402 ) | 26.524 | -0.012 | 3.3578 | 3.3563 | 0.0015 | 13.8 |
| [ ] ----- | ( 233 ) | 26.620 | --- | 3.3458 | --- | --- |  |
| [ ] ----- | ( 314 ) | 26.634 | --- | 3.3442 | --- | --- |  |
| [ ] ----- | ( 006 ) | 26.685 | --- | 3.3378 | --- | --- |  |
| [ ] ----- | ( 141 ) | 26.924 | --- | 3.3088 | --- | --- |  |
| [ ] 27.099 | ( 134 ) | 27.026 | -0.074 | 3.2965 | 3.2877 | 0.0088 | 21.5 |
| [ ] ----- | ( 042 ) | 27.306 | --- | 3.2634 | --- | --- |  |
| [ ] ----- | ( 412 ) | 27.312 | --- | 3.2627 | --- | --- |  |
| [ ] ----- | ( 3131$)$ | 27.318 | --- | 3.2619 | --- | --- |  |
| [ ] 27.461 | ( 106 ) | 27.421 | -0.041 | 3.2500 | 3.2453 | 0.0047 | 25.6 |
| [ ] ----- | (142) | 28.026 | --- | 3.1811 | --- | --- |  |
| [ ] ----- | ( 420 ) | 28.154 | --- | 3.1670 | --- | --- |  |
| [ ] ----- | ( 116 ) | 28.185 | --- | 3.1635 | --- | --- |  |
| [ ] 28.338 | ( 332 ) | 28.406 | 0.068 | 3.1394 | 3.1468 | -0.0074 | 32.6 |
| [ ] ----- | ( 421 ) | 28.511 | --- | 3.1281 | --- | --- |  |
| [ ] ----- | ( 225 ) | 28.624 | --- | 3.1160 | --- | --- |  |
| [ ] ----- | ( 240 ) | 28.711 | --- | 3.1067 | --- | --- |  |
| [ ] 28.939 | ( 324 ) | 28.929 | -0.010 | 3.0838 | 3.0828 | 0.0010 | 23.9 |
| [ ] ----- | ( 241 ) | 29.062 | --- | 3.0700 | --- | --- |  |
| [ ] ----- | ( 043 ) | 29.099 | --- | 3.0662 | --- | --- |  |
| [ ] ----- | ( 413 ) | 29.105 | --- | 3.0656 | --- | --- |  |
| [ ] 29.239 | ( 234 ) | 29.157 | -0.082 | 3.0602 | 3.0518 | 0.0084 | 7.5 |
| [ ] ----- | ( 206 ) | 29.526 | --- | 3.0229 | --- | --- |  |
| [ ] ----- | ( 422 ) | 29.559 | --- | 3.0196 | --- | --- |  |
| [ ] ----- | ( 026 ) | 29.705 | --- | 3.0050 | --- | --- |  |
| [] ----- | (143) | 29.780 | --- | 2.9976 | --- | --- |  |
| [ ] ----- | ( 315 ) | 29.858 | --- | 2.9900 | --- | --- |  |
| [ ] 30.019 | ( 242 ) | 30.092 | 0.073 | 2.9672 | 2.9743 | -0.0071 | 5.9 |
| [ ] ----- | ( 313 ) | 30.140 | --- | 2.9627 | --- | --- |  |
| [ ] ----- | (135) | 30.211 | --- | 2.9558 | --- | --- |  |
| [] ----- | ( 216 ) | 30.241 | --- | 2.9529 | --- | --- |  |
| [ ] ----- | (126) | 30.373 | --- | 2.9404 | --- | --- |  |
| [ ] ----- | ( 404 ) | 30.768 | --- | 2.9036 | --- | --- |  |
| [ ] 31.340 | ( 423 ) | 31.234 | -0.106 | 2.8613 | 2.8519 | 0.0095 | 12.5 |
| [ ] ----- | ( 044 ) | 31.453 | --- | 2.8419 | --- | --- |  |


| [ ] ----- | ( 414 ) | 31.458 | --- | 2.8414 | --- | --- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [] ----- | (430) | 31.727 | --- | 2.8180 | --- | --- |  |
| [] ----- | (243) | 31.742 | --- | 2.8167 | --- | --- |  |
| [] 31.961 | (325) | 31.941 | -0.019 | 2.7995 | 2.7979 | 0.0016 | 5.6 |
| [ ] ----- | (431) | 32.048 | --- | 2.7905 | --- | --- |  |
| [] ----- | (144) | 32.088 | --- | 2.7871 | --- | --- |  |
| [] ----- | (235) | 32.150 | --- | 2.7819 | --- | --- |  |
| [] ----- | ( 226 ) | 32.303 | --- | 2.7690 | --- | --- |  |
| [] ----- | (341) | 32.339 | --- | 2.7661 | --- | --- |  |
| [ ] ----- | (511) | 32.344 | --- | 2.7656 | --- | --- |  |
| [ ] 32.484 | (334) | 32.425 | -0.059 | 2.7589 | 2.7540 | 0.0049 | 8.1 |
| [ ] ----- | ( 1177$)$ | 32.546 | --- | 2.7489 | --- | --- |  |
| [] ----- | ( 502 ) | 32.627 | --- | 2.7423 | --- | --- |  |
| [] 32.781 | (306) | 32.760 | -0.020 | 2.7314 | 2.7297 | 0.0017 | 10.7 |
| [ ] ----- | (432) | 32.994 | --- | 2.7126 | --- | --- |  |
| [] ----- | (342) | 33.277 | --- | 2.6901 | --- | --- |  |
| [] ----- | ( 512 ) | 33.282 | --- | 2.6897 | --- | --- |  |
| [] ----- | ( 151 ) | 33.323 | --- | 2.6866 | --- | --- |  |
| [] ----- | ( 316 ) | 33.414 | --- | 2.6795 | --- | --- |  |
| [] ----- | (424) | 33.452 | --- | 2.6765 | --- | --- |  |
| [] 33.624 | (136) | 33.733 | 0.110 | 2.6548 | 2.6632 | -0.0084 | 9.8 |
| [ ] ----- | ( 027 ) | 33.888 | --- | 2.6430 | --- | --- |  |
| [] 34.035 | (244) | 33.931 | -0.105 | 2.6398 | 2.6319 | 0.0079 | 9.1 |
| [ ] ----- | ( 152 ) | 34.237 | --- | 2.6169 | --- | --- |  |
| [] ----- | (045) | 34.265 | --- | 2.6148 | --- | --- |  |
| [] ----- | (415) | 34.270 | --- | 2.6144 | --- | --- |  |
| [] ----- | ( 521 1) | 34.292 | --- | 2.6128 | --- | --- |  |
| [] ----- | (217) | 34.366 | --- | 2.6074 | --- | --- |  |
| [] ----- | (127) | 34.483 | --- | 2.5988 | --- | --- |  |
| [ ] ----- | (433) | 34.519 | --- | 2.5961 | --- | --- |  |
| [] 34.681 | (343) | 34.792 | 0.111 | 2.5764 | 2.5844 | -0.0080 | 14.1 |
| [ ] ----- | ( 513 ) | 34.797 | --- | 2.5761 | --- | --- |  |
| [] ----- | (250) | 34.812 | --- | 2.5750 | --- | --- |  |
| [] ----- | (145) | 34.855 | --- | 2.5719 | --- | --- |  |
| [] ----- | (251) | 35.108 | --- | 2.5540 | --- | --- |  |
| [] ----- | (335) | 35.168 | --- | 2.5497 | --- | --- |  |
| [] ----- | ( 522 ) | 35.184 | --- | 2.5486 | --- | --- |  |
| [] ----- | ( 326 ) | 35.309 | --- | 2.5398 | --- | --- |  |
| [ ] ----- | (236) | 35.500 | --- | 2.5266 | --- | --- |  |
| [] 35.699 | ( 153 ) | 35.716 | 0.017 | 2.5118 | 2.5130 | -0.0012 | 13.3 |
| [] ----- | ( 008 ) | 35.841 | --- | 2.5034 | --- | --- |  |
| [] 35.991 | (252) | 35.982 | -0.008 | 2.4939 | 2.4933 | 0.0006 | 8.4 |
| [ ] ----- | ( 425 ) | 36.126 | --- | 2.4843 | --- | --- |  |
| [] ----- | (440) | 36.197 | --- | 2.4796 | --- | --- |  |
| [] ----- | (227) | 36.218 | --- | 2.4782 | --- | --- |  |
| [] ----- | (504) | 36.225 | --- | 2.4777 | --- | --- |  |


| [ ] 36.417 | ( 108 ) | 36.408 | -0.009 | 2.4657 | 2.4651 | 0.0006 | 6.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [] ----- | ( 441 ) | 36.483 | --- | 2.4608 | --- | --- |  |
| [ ] ----- | ( 434 ) | 36.561 | --- | 2.4557 | --- | --- |  |
| [ ] ----- | ( 245 ) | 36.574 | --- | 2.4549 | --- | --- |  |
| [ ] ----- | ( 523 ) | 36.630 | --- | 2.4513 | --- | --- |  |
| [ ] ----- | ( 344 ) | 36.820 | --- | 2.4390 | --- | --- |  |
| [ ] ----- | ( 514 ) | 36.825 | --- | 2.4387 | --- | --- |  |
| [] 36.860 | ( 406 ) | 36.863 | 0.003 | 2.4363 | 2.4365 | -0.0002 | 6.8 |
| [ ] ----- | ( 118 ) | 37.005 | --- | 2.4273 | --- | --- |  |
| [ ] ----- | ( 317 ) | 37.226 | --- | 2.4134 | --- | --- |  |
| [] 37.322 | ( 442 ) | 37.330 | 0.008 | 2.4069 | 2.4074 | -0.0005 | 10.3 |
| [ ] ----- | ( 5311$)$ | 37.339 | --- | 2.4063 | --- | --- |  |
| [] ----- | ( 253 ) | 37.401 | --- | 2.4025 | --- | --- |  |
| [ ] ----- | ( 046 ) | 37.449 | --- | 2.3995 | --- | -- |  |
| [ ] ----- | ( 416 ) | 37.453 | --- | 2.3992 | --- | --- |  |
| [ ] ----- | ( 137 ) | 37.517 | --- | 2.3953 | --- | --- |  |
| [ ] ----- | (154) | 37.701 | --- | 2.3840 | --- | --- |  |
| [] 37.841 | ( 600 ) | 37.832 | -0.009 | 2.3761 | 2.3755 | 0.0005 | 15.1 |
| [ ] ----- | ( 351 ) | 37.919 | --- | 2.3708 | --- | --- |  |
| [ ] ----- | ( 146 ) | 37.996 | --- | 2.3662 | --- | --- |  |
| [ ] ----- | ( 208 ) | 38.067 | --- | 2.3620 | --- | --- |  |
| [ ] ----- | ( 532 ) | 38.170 | --- | 2.3558 | --- | --- |  |
| [ ] ----- | ( 028 ) | 38.210 | --- | 2.3534 | --- | --- |  |
| [ ] ----- | ( 336 ) | 38.287 | --- | 2.3489 | --- | --- |  |
| [ ] ----- | ( 610 ) | 38.410 | --- | 2.3417 | --- | --- |  |
| [] ----- | ( 524 ) | 38.574 | --- | 2.3320 | --- | --- |  |
| [ ] ----- | ( 218 ) | 38.641 | --- | 2.3281 | --- | --- |  |
| [ ] ----- | ( 611 ) | 38.682 | --- | 2.3258 | --- | --- |  |
| [ ] ----- | ( 443 ) | 38.706 | --- | 2.3244 | --- | --- |  |
| [ ] ----- | ( 352 ) | 38.739 | --- | 2.3225 | --- | --- |  |
| [] 38.759 | ( 128 ) | 38.748 | -0.012 | 2.3220 | 2.3213 | 0.0007 | 16.4 |
| [ ] ----- | ( 602 ) | 38.924 | --- | 2.3119 | --- | - |  |
| [ ] ----- | ( 327 ) | 38.960 | --- | 2.3098 | --- | --- |  |
| [ ] ----- | (435) | 39.050 | --- | 2.3047 | --- | --- |  |
| [ ] ----- | ( 060 ) | 39.112 | --- | 2.3012 | --- | --- |  |
| [ ] ----- | ( 237 ) | 39.136 | --- | 2.2999 | --- | --- |  |
| [ ] ----- | ( 426 ) | 39.179 | --- | 2.2974 | --- | --- |  |
| [ ] ----- | ( 345 ) | 39.295 | --- | 2.2909 | --- | --- |  |
| [ ] ----- | ( 515 ) | 39.300 | --- | 2.2907 | --- | --- |  |
| [ ] ----- | ( 254 ) | 39.313 | --- | 2.2899 | --- | --- |  |
| [ ] ----- | ( 061 ) | 39.380 | --- | 2.2862 | --- | - |  |
| [ ] ----- | ( 612 ) | 39.488 | --- | 2.2801 | --- | --- |  |
| [ ] ----- | ( 533 ) | 39.521 | --- | 2.2783 | --- | --- |  |
| [] 39.583 | ( 246 ) | 39.597 | 0.014 | 2.2741 | 2.2749 | -0.0008 | 15.8 |
| [ ] ----- | ( 161 ) | 39.904 | --- | 2.2573 | --- | --- |  |

[^0]
[^0]:    \#: calculated by JADE.5.

