## **Electronic Supplementary Information**

## Hydroxyl Radical-Induced Etching of Glutathione-Capped Gold Nanoparticles to Oligomeric Au<sup>I</sup>-Thiolate Complexes

Tzu-Heng Chen,<sup>a</sup> Chih-Chun Nieh,<sup>a</sup> Ya-Chen Shih,<sup>a</sup> Chen-Yi Ke<sup>a</sup> and Wei-Lung Tseng\*<sup>a, b</sup>

<sup>[a]</sup> Department of Chemistry, National Sun Yat-sen University, Taiwan
<sup>[b]</sup> School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan

Correspondence: Dr. Wei-Lung Tseng, Department of Chemistry, National Sun Yatsen University, 70, Lien-hai Road, Kaohsiung, Taiwan 804.

E-mail: tsengwl@mail.nsysu.edu.tw

Fax: 011-886-7-3684046.

T.-H. Chen and C.-C. Nieh contributed equally to this work

## Calculation

The fermi energy ( $E_{Fermi}$ ) of gold is approximately 5.5 eV. The gold nanolcusters preferentially contain a magnic number (N) of atoms, including 2, 5, 8, 11, 13, 18, 22, 25, 28, 39, 55, and so on. According to the spherical Jellium model,  $E_{Fermi}/N^{1/3}$ , the emission maxima of Au<sub>2</sub> is

5.5 
$$eV/2^{1/3} = 4.37 eV = 284 nm$$
,

the emission maxim of Au<sub>5</sub> is

$$5.5 \text{ eV}/5^{1/3} = 3.22 \text{ eV} = 385 \text{ nm}$$

the emission maxima of Au<sub>8</sub> is

$$5.5 \text{ eV}/8^{1/3} = 2.75 \text{ eV} = 450 \text{ nm},$$

the emission maxima of Au<sub>11</sub> is

$$5.5 \text{ eV}/11^{1/3} = 2.47 \text{ eV} = 502 \text{ nm}$$

and, the emission maxima of Au<sub>13</sub> is

$$5.5 \text{ eV}/25^{1/3} = 2.34 \text{ eV} = 530 \text{ nm}.$$

Because trypsin-, lysozyme-, and glucose oxidase-stabilized gold nanoclusters exhibited emission maxima at 415, 460, and 535 nm, we assert that trypsin-, lysozyme-, and glucose oxidase-stabilized gold nanoclusters correspond to  $Au_5$ ,  $Au_8$ , and  $Au_{13}$  clusters, respectively.



**Figure S1.** Time evolution of visible spectra of a mixture of GSH-AuNPs and 5 mM  $Fe^{II}$ .



**Figure S2.** Time evolution of visible spectra of a mixture of GSH-AuNPs and 100 mM  $H_2O_2$ .



**Figure S3.** TEM imges of GSH-AuNPs (A) before and (B) after treatement of Fenton reagent for 1 h.



**Figure S4.** DLS spectra of GSH-AuNS before (red color) and after (black color) the addition of Fenton's solution. Fenton's reagent contains 5 mM Fe<sup>II</sup> and 100 mM  $H_2O_2$ .



**Figure S5.** Scattering images of the products obtained from the incubation of 100 nmsized gold nanospheres and Fenton's solution at (A) 10 s, (B) 30 min, (C) 1 h, and (D) 3 h. Exposure times, 50 ms; scattering detection area using a 40× objective, 860  $\mu$ m × 610  $\mu$ m corresponding to 4080 (horizontal) × 3072 (vertical) pixels.



**Figure S6**. (A, B) TEM images of short gold nanorods (A) before and (B) after the addition of Fenton's solution.



**Figure S7**. (A, B) TEM images of octahedral gold nanocrystals (A) before and (B) after the addition of Fenton's solution.



**Figure S8.** (A) Time evolution of photo images of electronic scraps in the presence of 5 mM Fe<sup>II</sup> and 100 mM  $H_2O_2$ . (B) The concentrations of the liberated gold ions from electronic scraps as a function of time.



**Figure S9.** Absorption spectra obtained from incubation of (A) trypsin, (B) lysozyme, and (C) glucose oxidase with the oligomeric  $Au^{I}$ -thiolate complexes. Protein (25 mg/mL) reacted with the oligomeric  $Au^{I}$ -thiolate complexes at ambient temperature for 8 h.



**Figure S10**. Fluorescence spectra of protein (red line) and protein-stabilized AuNCs (black line): (A) trypsin, (B) lysozyme, and (C) glucose oxidase.



Figure S11. Fluorescence spectra of glucose oxidase-stabilized AuNCs (a) before and (b) after the addition of 100  $\mu$ M Hg<sup>2+</sup>.



**Figure S12.** Effect of time on the fluorescence intensity at (A) 415, (B) 460, and (C) 535 nm of (A) trypsin-, (B) lysozyme-, and (C) glucose oxidase-stabilized AuNCs.



**Figure S13.** The fluorescence intensity at (A) 415, (B) 460, and (C) 535 nm of (A) trypsin-, (B) lysozyme-, and (C) glucose oxidase-stabilized AuNCs in the absence and presence of 400 mM NaCl.



**Figure S14.** Fluorescence spectrum of bovine serum albumin-stabilized AuNCs. The excitation wavelength is 350 nm.



**Figure S15.** Fluorescence spectrum of choline oxidase-stabilized AuNCs. The excitation wavelength is 380 nm.



**Figure S16.** Fluorescence intensity at 460 nm of lysozyme-stabilized AuNCs in the presence of different concentrations of GSH. The incubation time is 15 min. Inset: a plot of the fluorescence intensity at 460 nm *versus* the GSH concentration.



**Figure S17.** Fluorescence intensity at 535 nm of glucose oxidase-stabilized AuNCs in the presence of different concentrations of GSH. The incubation time is 15 min. Inset: a plot of the fluorescence intensity at 535 nm versus the GSH concentration.



Figure S18. Time evolution of visible spectra of a mixture of 70  $\mu$ M 4-nitrophenol and the oligomeric Au<sup>I</sup>-thiolate complexes. This reaction proceeded at ambient temperature.