Electronic Supplementary Information (ESI)

Adsorption of Hg²⁺ by thiol functionalized hollow mesoporous silica microspheres with magnetic cores

Xian Zhang,^{a,b} Tianxing Wu,^b Yunxia Zhang,^b Dickon H. L. Ng,^c

Huijun Zhao^a and Guozhong Wang^{*a,b}

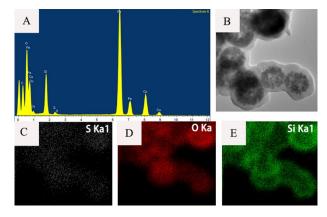


Fig. S1 (a) EDS spectrum of the SH-HMSMCs, (b) TEM image of the SH-HMSMCs, (c-e) The elemental mapping of the SH-HMSMCs from the HRTEM images, based on the S K_{a1} , O K_a and Si K_{a1} .

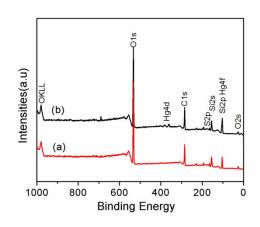


Fig. S2 The full-range XPS spectra of SH-HMSMCs for Hg^{2+} (a) before and (b) after adsorption.

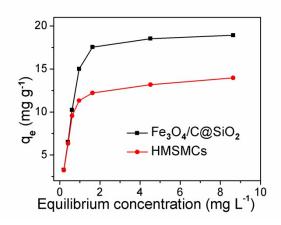


Fig. S3 Adsorption isotherms of Hg^{2+} on the HMSMCs and $Fe_3O_4/C@SiO_2$.

 Table S1 N2 sorption-derived textural properties of the prepared Fe3O4/C@SiO2, HMSMCs,

 SH-HMSMCs.
 BET surface area
 Pore volume
 Pore diameter

	BET surface area	Pore volume	Pore diameter
Sample	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
Fe ₃ O ₄ /C@SiO ₂	102.76	0.33	1.70
HMSMCs	420.66	1.11	2.15
SH-HMSMCs	380.75	0.95	1.91

Table S2 The pseudo-second-order rates constant of adsorption kinetics of SH-HMSMCs inaqueous solution of Hg^{2+} at room temperature.

Initial concentration	K_{ad} (g mg ⁻¹ min ⁻¹)	R ²
1 mg L ⁻¹	3.6×10^{-3}	0.998
6 mg L ⁻¹	$5.6 imes 10^{-3}$	0.999

Table S3 Adsorption capacity of SH-HMSMCs for Hg^{2+} , Pb^{2+} , Cu^{2+} , Zn^{2+} calculated from the data of Table 1.

	Hg^{2+}	Pb ²⁺	Zn^{2+}	Cu ²⁺
adsorption capacity (mmol g ⁻¹)	0.0848	0.010	0	0.031

Table S4 Elution rate of SH-HMSMCs saturated with adsorbed Pb^{2+} or Cu^{2+} in a solution with or without Hg^{2+} , 50 mg adsorbent saturated Cu^{2+} (Pb^{2+}) was added to 100 ml Hg^{2+} (10 mg L⁻¹) and aqueous solution at room temperature with agitation. The metal concentrations in solution were analyzed by ICP.

	Water solution (PH=6)		Hg^{2+} (10 mg L ⁻¹) solution (PH=6		
	Pb ²⁺	Cu^{2+}	Pb ²⁺	Cu ²⁺	
Elution rate	1.2%	1.8%	23.7%	19.5%	
Hg ²⁺ adsorption capacity			125.3 mg g ⁻¹	119.5 mg g ⁻¹	

Table S5 The concentrations of metal ions in solutions before and after treated with SH-HMSMCs samples analyzed by ICP-MS. 20 ml single kind of heavy metal ion solution was mixed with 5 mg adsorbent at room temperature with agitation for 12 h.

	${ m Hg^{2+}}(\mu g \ L^{-1})$	$Pb^{2+} (\mu g L^{-1})$	Zn^{2+} (µg L ⁻¹)	$Cu^{2+} (\mu g L^{-1})$
Original solution	500.50 49.41	596.9 61.20	898.40 65.50	700.80 70.80
SH-HMSMCs	0.53 0.56	10.87 3.19	724.09 33.9	68.63 11.66

adsorbent	Langmuir model			Freundlich model		
	Q (mg g ⁻¹)	B (L mg ⁻¹)	R ²	K _F	n	R ²
SH-HMSMCs-A	118.6	4.90	0.98	1.80	3.28	0.94
SH-HMSMCs-B	110.1	4.96	0.99	1.77	3.50	0.93
SH-HMSMCs	101.5	5.63	0.98	1.75	3.67	0.92
SH-Fe ₃ O ₄ /C@SiO ₂	62.8	4.40	0.99	1.45	3.45	0.95

Table S6 Langmuir and Freundlich isotherms parameters for Hg^{2+} adsorption.

Table S7 Comparison the self-made adsorbent with some research results of other researchersthat treat Hg^{2+}

Adsorbents	Q _m (mg	Lowest	Ref.
	g-1)	equilibrium	
		concentration	
Microporous and layered titanosilicates		$2 \ \mu g \ L^{-1}$	[41]
Multifunctional mesoporous material	21.05	50 μg L ⁻¹	[42]
$Fe_3O_4@C$ Nanoparticles Modified with -SO_3H and -COOH	83.1		[43]
Naphthalimide-functionalized magnetic nanosensor	5.6		[44]
Self-made SH-HMSMCs	118.6	0.53 μg L ⁻¹	This work