Supplementary Information

Unexpected Production of Singlet Oxygen by Sub-Micron Cerium Oxide Particles and Enhanced Photocatalytic Activity against Methyl Orange

C.R. Minitha¹, R. Pandian², S. Amirthapandian² and R.T. Rajendrakumar ^{1,3*}

¹Advanced Materials and Devices Laboratory (AMDL), Department of Physics, Bharathiar University, Coimbatore - 641 046, India

²Materials Physics Division, Indira Gandhi Center for Atomic Research, Kalpakkam, 603102, India.

³Department of Nanoscience and technology, Bharathiar University, Coimbatore - 641 046, India

a) Electronic mail: rtrkumar@buc.edu.in

I. Methyl orange dye degradation

FIG. S1. UV absorption spectrum of Methyl orange dye (15 ppm) with CeO₂ particles.

FIG S2. UV absorption spectrum of (a) FFA and (b) NBT for singlet oxygen and superoxide anion respectively with CeO₂ particles.

III. BET analysis of CeO₂ Particles

FIG S3. BET adsorption-desorption isotherms of C1 and C3.

IV. HRTEM and SAED pattern of Samples C1, C2 and C3

FIG S4. HRTEM images of CeO_2 particles (a) C1, (b) C2 and (c) C3.

Dotted rings: CeO₂ Particles of smaller than 10 nm.