Supporting Information

Optimization of the zinc oxide electron transport layer in P3HT:PC61BM based organic solar cells by annealing and yttrium doping

Sayantan Das and T. L. Alford*

Department of Chemistry and Biochemistry and School for Engineering of Matter, Transport and Energy Arizona State University, Tempe, Arizona 85287, USA

TABLE 1 Device parameters of ZnO based inverted organic solar cells under illumination

ZnO anneal Temperature (°C)	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)
50	0.59 ± 0.02	7.78 ± 0.13	27.8 ± 0.31
150	0.60 ± 0.01	8.72 ± 0.17	41.7 ± 0.24
300	0.60 ± 0.01	8.76 ± 0.09	32.9 ± 0.11
450	0.48 ± 0.03	6.64 ± 0.12	31.4 ± 0.27

TABLE 2 Device parameters of Y doped ZnO based inverted organic solar cells under illumination

ETL	V _{oc} (V)	J _{sc} (mA/cm ²)	FF(%)
ZnO	0.60 ± 0.01	8.72 ± 0.17	41.7 ± 0.24
0.5%YZO	0.59 ± 0.01	9.19 ± 0.09	49.2 ± 0.17
1.0%YZO	0.59 ± 0.01	9.81 ± 0.12	49.3 ± 0.21
1.5%YZO	0.60 ± 0.01	8.98 ± 0.18	51.5 ± 0.26
2.0%YZO	0.60 ± 0.01	8.99 ± 0.21	50.3 ± 0.34

Series Resistance (R_s) and shunt resistance (R_{sh}) are evaluated from the following equations:

$$R_S = \left(\frac{dV}{dJ}\right)_{V = V_{OC}}$$

$$R_{sh} = \left(\frac{dV}{dJ}\right)_{J=J_{SC}}$$