Supporting Information ## Optimization of the zinc oxide electron transport layer in P3HT:PC61BM based organic solar cells by annealing and yttrium doping ## Sayantan Das and T. L. Alford* Department of Chemistry and Biochemistry and School for Engineering of Matter, Transport and Energy Arizona State University, Tempe, Arizona 85287, USA **TABLE 1** Device parameters of ZnO based inverted organic solar cells under illumination | ZnO anneal
Temperature
(°C) | V _{oc} (V) | J _{sc} (mA/cm ²) | FF(%) | |-----------------------------------|---------------------|---------------------------------------|-----------------| | 50 | 0.59 ± 0.02 | 7.78 ± 0.13 | 27.8 ± 0.31 | | 150 | 0.60 ± 0.01 | 8.72 ± 0.17 | 41.7 ± 0.24 | | 300 | 0.60 ± 0.01 | 8.76 ± 0.09 | 32.9 ± 0.11 | | 450 | 0.48 ± 0.03 | 6.64 ± 0.12 | 31.4 ± 0.27 | **TABLE 2** Device parameters of Y doped ZnO based inverted organic solar cells under illumination | ETL | V _{oc} (V) | J _{sc} (mA/cm ²) | FF(%) | |---------|---------------------|---------------------------------------|-----------------| | ZnO | 0.60 ± 0.01 | 8.72 ± 0.17 | 41.7 ± 0.24 | | 0.5%YZO | 0.59 ± 0.01 | 9.19 ± 0.09 | 49.2 ± 0.17 | | 1.0%YZO | 0.59 ± 0.01 | 9.81 ± 0.12 | 49.3 ± 0.21 | | 1.5%YZO | 0.60 ± 0.01 | 8.98 ± 0.18 | 51.5 ± 0.26 | | 2.0%YZO | 0.60 ± 0.01 | 8.99 ± 0.21 | 50.3 ± 0.34 | Series Resistance (R_s) and shunt resistance (R_{sh}) are evaluated from the following equations: $$R_S = \left(\frac{dV}{dJ}\right)_{V = V_{OC}}$$ $$R_{sh} = \left(\frac{dV}{dJ}\right)_{J=J_{SC}}$$