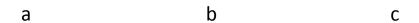
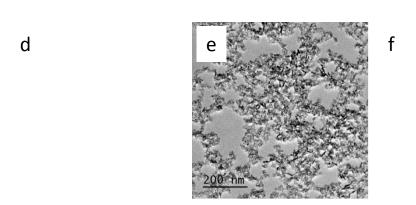
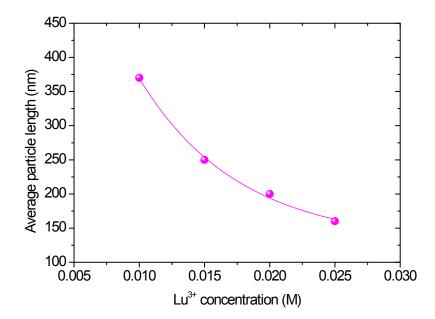
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary information

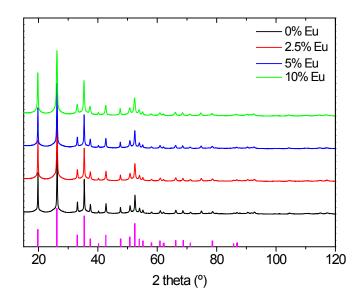

Quick synthesis, functionalization and properties of uniform, $luminescent \ LuPO_4-based \ nanoparticles.$


Ana I. Becerro* and Manuel Ocaña

Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville). c/Américo Vespucio, 49. 41092 Seville (Spain).


Fax no: 954460165

^{*} Corresponding author. E-mail address: anieto@icmse.csic.es. Tel no: +34 95448945.



TEM micrographs of the particles obtained after changing only one of the parameters (Lutetium acetate (0.025 M), H_3PO_4 (0.1 M), butylene glycol (total volume 5 mL), 180° C, 30 min) necessary to obtain the elongated LuPO₄ nanoparticles shown in Figure 1 of the paper. Parameters changes: a) Lutetium source: Lutetium acetyl acetonate; b) Lutetium acetate concentration: 0.01 M; c) Phosphate source: [BMIM] PO_4 ; d) H_3PO_4 concentration = 0.05 M; e) Solvent: Glycerol, f) Solvent: ethylene glycol.

Average particle length versus concentration of Lutetium acetate used in the synthesis of LuPO₄ particles. The rest of synthesis conditions are identical to those given in Figure 1 of the paper.

TEM micrograph of $LuPO_4$ particles doped with 15% Eu^{3+} obtained in the conditions described in Figure 1 of the paper.

XRD patterns of LuPO₄ nanoparticles doped with different Eu³⁺ contents