Supporting Information

Sn-MFI as Active, Sulphur and Water Tolerant Catalysts for Selective Reduction of NO_x

Yue Peng[†], Honggen Peng[†], Wenming Liu, Yawen Liu, Conghui Wang, Mengjia Hao, Fangfang Ren, Yarong Li, Xianglan Xu, Xiang Wang^{*[a]}

College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China

*[a] Corresponding author: <u>xwang23@ncu.edu.cn</u>

Samples	Si/Sn molar	Si/Sn molar	SnO ₂ contents
	ratio ^[a]	ratio ^[b]	(%) ^[b]
Silicalite-1			
Sn-MFI-133	133	131	1.9
Sn-MFI-67	67	65	3.6
Sn-MFI-33	33	33	7.1

Table S1. ICP measurements of the chemical compositions of Sn-MFI samples

[a] Initial Si/Sn ratios for sample preparation.

[b] Identified by ICP-AES.

*[a]Y. Peng , Dr. H.G.Peng, Prof. W.M. Liu, Y.W. Liu, C.H. Wang,

M.J. Hao, F.F. Ren, Y.R. Li, Dr. X.L. Xu, Prof. Dr . X. Wang

NanchangUniversity

Nanchang, Jiangxi330031, P. R. China

E-mail: xwang23@ncu.edu.cn(X. Wang)

ment of Chemistry

Tel: +86 15979149877 (X. Wang)

 $^{[^{\}dagger}]$ These authors contributed equally to this work.

Samples	Mean Crystallite size	Mean particle size	Agglomeration
	(nm) ^[a]	(µm) ^[b]	factor ^[c]
Silicalite-1	51.7	9.5	245.5
Sn-MFI-133	44.3	1.0	29.5
Sn-MFI-67	41.0	0.7	20.5
Sn-MFI-33	31.5	0.5	19.5
Sn-MFI-20		0.2	

Table S2. Textural properties of Sn-MFI samples measured by XRD and SEM.

[a] Measured by XRD and based on hkl (101) peak.

[b] Measured by SEM.

[c] masured by Mean particle size/Mean crystallite size.[1]

Fig. S1. N2 adsorption-desorption isotherms and pore size distributions of Silicalite-1 (A), Sn-MFI-133 (B), Sn-

MFI-67 (C), Sn-MFI-33 (D) and Sn-MFI-20 (E)

Fig. S2. FTIR spectra of Sn-MFI samples

Fig. S3. XPS analysis of Sn-MFI samples: A-E) deconvolution of O 1s peaks; F) Sn 3d peaks; G) Si 2p peaks

Fig. S4. Effects of (A) crystallization temperature and (B) crystallization time on the reaction performance

MFI-33

Fig. S5. Effects of WHSV on the reaction performance of Sn-MFI-33

[1] J. Yu, D. Zhao, X. Xu, X. Wang, N. Zhang, ChemCatChem, 2012, 4, 1122-1132.