Supporting Information

for

Colorimetric and Ratiometric Fluorescent Chemosensor for Fluoride Ion Based on Phenanthroline-Imidazole (PI): Spectroscopic, NMR and density functional studies

Ajit Kumar Mahapatra*a, Parthasarathi Karmakar a, Jagannath Roy a, Srimanta Mannaa, Kalipada Maiti a, Prithidipa Sahoo b and Debasish Mandalc

^a Department of Chemistry, Indian Institute of Engineering Science & Technology

(Formerly Bengal Engineering and Science University), Shibpur, Howrah – 711103, India.

^bDepartment of Chemistry, Visva-Bharati University, Santiniketan, Birbhum, West Bengal, India -731235 India.

^cDepartment of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem (Israel).

*Corresponding author: Tel.: +91 33 2668 4561; fax: +91 33 26684564;

E-mail: mahapatra574@gmail.com

Content

1.	¹ H NMR of probe PI (d ₆ -DMSO, 400 MHz)	S3			
2.	ESI-MS [M] ⁺ spectrum of probe PI	S4			
3.	¹³ C NMR spectrum of probe PI	S5			
4.	Binding constant curve of probe PI with F ⁻ determined by UV –Vis method	S6			
5.	Job's plot	S 6			
6.	Binding constant curve of probe PI with F ⁻ determined by fluorescence method	S7			
7.	Calculations for detection limit	S7			
8.	(a) The changes in UV/Vis spectra of probe PI in DMSO (10 ⁻⁵ M) after addition				
	of 120 equiv of OH-	S8			
	(b) Fluorescence (Excitation=392 nm) titration of probe PI with OH- in DMSO	S8			
9.	9. Fluorescence titration of probe PI with F ⁻ in DMSO: H ₂ 0 (95:5)				
10. Computational Study					

Fig. S1: ¹H NMR of probe PI.

Fig. S2: ESI-MS [M]⁺ spectrum of probe **PI**

Fig. S3: ¹³C NMR spectrum of probe PI.

Fig. S4. Binding constant curve of probe **PI** with F⁻ determined by UV –Vis method.

Fig. S5. Job's plot for determining the stoichiometry of probe **PI** and F⁻ ion by fluorescence method.

Fig. S6. Binding constant curve of Probe **PI** with F⁻ determined by fluorescence method.

Calculations for detection limit:

The detection limit (DL) of probe **PI** for F⁻ were determined from the following equation:

$$DL = K* Sb1/S$$

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

Here, we get Sb1=10383. Hence detection limit =5.2 μ M.

Fig. S7: Calibration curve for fluorescence titration of probe PI with F⁻.

Fig.S8: (a) The changes in UV/Vis spectra of probe **PI** in DMSO (10⁻⁵M) after addition of 120 equiv of OH⁻. (b) Fluorescence (Excitation=392 nm) titration of probe **PI** with OH⁻ (as a TBAOH salt from 0 to 100 equiv) in DMSO.

Fig.S9: Fluorescence (Excitation=392 nm) titration of probe **PI** with F- (as a TBAF salt from 0 to 100 equiv) in DMSO: H_2O (95:5 v/v).

Table S1. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations, and CI Coefficients of the low-lying excited states of CS1 and all the complexes. The data were calculated by TDDFT//B3LYP/6-31+G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	f ^b	Composition ^c	(composition)
Probe PI					
	$S_0 \rightarrow S_1$	2.8792 eV (430.62 nm)	2.3541	$H \rightarrow L$	91.99
	$S_0 \rightarrow S_4$	3.4115 eV eV(363.43 nm)	0.3416	H -1→ L+1	92.07
	$S_0 \rightarrow S_9$	3.7306 eV(332.34 nm)	0.2947	H-2 → L	64.33
Deprotonated Structure of probe PI-					
	$S_0 \rightarrow S_1$	2.7012 eV(458.99 nm)	2.5180	$H \rightarrow L$	93.81
	$S_0 \rightarrow S_6$	3.3861 eV(366.16 nm)	0.3148	H-1 → L+1	71.11
	$S_0 \rightarrow S_{25}$	4.3384 eV(285.78 nm)	0.3519	$H-3 \rightarrow L+3$ $H-2 \rightarrow L+2$	33.97
	$S_0 \rightarrow S_{32}$	4.4932 eV(275.94 nm)	0.3895	H-5 → L	57.07
	$S_0 \rightarrow S_{36}$	4.5768 eV(270.90 nm)	0.5110	$H-5 \rightarrow L+1$	54.78

[a] Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. [b] Oscillator strength (only the f > 0.25 was considered). [c] H stands for HOMO and L stands for LUMO.

Reference

- 1. J. Tomasi and M. Persico, *Chem. Rev.*, 1994, **94**, 2027–2094.
- 2. M. Cossi,; V. Barone,; R.Cammi,; J. Tomasi, Chem. Phys. Lett. 1996, 255, 327–335.
- 3. V. Barone,; M. Cossi and J. J. Tomasi, *Chem. Phys.* 1997, **107**, 3210–3221.
- 4. V.Barone,; M. Cossi and J. J. Tomasi, Comput. Chem. 1998, 19, 404–417.
- 5. M. Cossi and V. J. Barone, *Chem. Phys.* 1998, **109**, 6246–6254.