Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

The partially controllable growth trend of carbon nanoparticles in solid-state pyrolysis of organometallic precursor by introducing POSS units, and their magnetic properties

Zhijun Ruan, Jingui Qin, and Zhen Li*

Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan 430072, China

Scheme S1. Synthetic pathway of PT.

Figure S1. IR spectra of 2, T and PT.

Figure S2. TGA thermograms of 2, T and PT measured under nitrogen at a heating rate of 10 $^{\circ}$ C min⁻¹.

Thermal properties and pyrolysis program

The pyrolysis program, such as heating rate, temperature and holding time had a significant influence on the structure of the yielded CNPs. Generally, the samples were first heated to their decomposition temperature of the Co-carbonyl groups and held at this temperature for several hours, then heated to a high temperature and held there for another several hours. In order to determine our pyrolysis program, the thermal properties of compounds **2**, **T** and **PT** were investigated by using

thermogravimetric analysis. The thermal-decomposition temperatures (T_d , corresponding to 5% weight loss) of **T** and **PT** were ~180 °C. Thus, we determined the pyrolysis program as following: powders of the organometallic precursor were placed in quartz tubes sealed under high vacuum, then suffered to different heating programs in a furnace. The samples were first heated slowly to their decomposition temperature 180 °C, held for two hours to ensure the completely decomposition of the Co complexes, and then heated to a higher temperature where the sample was held for several hours. After slowly cooled to room temperature, the obtained products were characterized by using powder X-ray diffraction (XRD), scanning electron (SEM) and transmission electron (TEM) microscopy, energy-dispersive spectroscopy (EDS) and vibrating sample magnetometer.

Figure S3. HRTEM images of the materials obtained through thermolysis of T and PT. (a, b) for T-700-24h; (c, d) for T-850-8h; (e) for PT-700-24h; (f) for PT-850-8h.

Figure S4. SEM-EDX spectra of the materials obtained through thermolysis of compounds: a) T-700-8h, b) T-700-24h, c) T-800-8h, d) T-850-8h, e) PT-700-24h and f) PT-850-8h.

Table S1. Compositions of organometallic precursors and their pyrolysis products.

sample	C (%)	Co(%)	Si(%)	O(%)
Τ	47.1	24.3	0.00	26.4
T-700-8h	76.2	23.8	_a	-
T-700-24h	70.2	29.8	-	-
T-800-8h	67.0	33.0	-	-
T-850-8h	63.7	36.3	-	-
РТ	43.9	9.0	17.1	24.4
PT-700-24h	38.9	16.2	18.5	26.4
PT-850-8h	27.1	24.6	18.4	29.9

^{*a.*} The symbol of "-" represents the element was not detected.

Figure S5. TEM-EDX spectra of (a) **T-700-24h** and (b) **T-850-8h**.

20

ppm

b

e

Figure S9. ¹H NMR spectrum of 2 in CDCl_{3.}

Figure S10. ¹³C NMR spectrum of 2 in CDCl_{3.}

Figure S13. ¹³C NMR spectrum of PT in CDCl₃.

