One-pot Synthesis of Unsymmetrical Squaramides

Juan V. Alegre-Requena,^a Eugenia Marqués-López^a and Raquel P. Herrera^{*a}

^a Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica. Instituto de Síntesis Química y

Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza. E-50009 Zaragoza, Spain. Email:

raquelph@unizar.es

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

General Experimental Methods. Purification of reaction products was carried out in same cases by flash chromatography using silica-gel (0.063-0.200 mm). Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F plates. ESI ionization method and mass analyzer type MicroTof-Q were used for the HRMS measurements. ¹H NMR spectra were recorded at 400 and 300 MHz; ¹³C APT-NMR spectra were recorded at 100 and 75 MHz; DMSO- d_6 and CDCl₃ as the solvents. Chemical shifts were reported in the δ scale relative to residual CHCl₃ (7.26 ppm) and DMSO (2.50 ppm) for ¹H NMR and to the central line of CHCl₃ (77 ppm) and DMSO (39.43 ppm) for ¹³C APT-NMR.

Materials. All commercially available solvents and reagents were used as received. The ¹H and ¹³C APT-NMR spectra for compounds **5ag**,^[1] **5cg**,^[2] **5aj**,^[3] **5cj**,^[3] **5gj**,^[4] **5ak**,^[3] **5ck**,^[3] **5gg**,^[6] **5gg**,^[6] **5ig**,^[7] **5ai**,^[1] **10**,^[8] **14**,^[9] and **18**^[10] are consistent with values previously reported in the literature.

- ² Y. Zhu, J. P. Malerich and V. H. Rawal, Angew. Chem. Int. Ed., 2010, **49**, 153.
- ³ W. Yang and D.-M. Du, Org. Lett., 2010, **12**, 5450.

- ⁵ J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, **130**, 14416.
- ⁶ R. Baran, E. Veverková, A. Škvorcová and R. Šebesta, Org. Biomol. Chem., 2013, **11**, 7705.
- ⁷ W. Yang and D.-M. Du, *Org. Biomol. Chem.*, 2012, **10**, 6876.

¹ H. Konishi, T. Y. Lam, J. P. Malerich and V. H. Rawal, Org. Lett., 2010, **12**, 2028.

⁴ H. Jiang, M. W. Paixão, D. Monge and K. A. Jørgensen, J. Am. Chem. Soc., 2010, **132**, 2775.

⁸ F. Olmo, C. Rotger, I. Ramírez-Macías, L. Martínez, C. Marín, L. Carreras, K. Urbanová, M. Vega, G. Chaves-Lemaur, A. Sampedro, M. J. Rosales, M. Sánchez-Moreno and A. Costa, *J. Med. Chem.*, 2014, **57**, 987.

⁹ J. A. Butera, M. M. Antane, S. A. Antane, T. M. Argentieri, C. Freeden, R. F. Graceffa, B. H. Hirth, D. Jenkins, J. R. Lennox, E. Matelan, N. W. Norton, D. Quagliato, J. H. Sheldon, W. Spinelli, D. Warga, A. Wojdan and M. Woods, *J. Med. Chem.*, 2000, **43**, 1187.

¹⁰ A. M. Gilbert, M. M. Antane, T. M. Argentieri, J. A. Butera, G. D. Francisco, C. Freeden, E. G. Gundersen, R. F. Graceffa, D. Herbst, B. H. Hirth, J. R. Lennox, G. McFarlane, N. W. Norton, D. Quagliato, J. H. Sheldon, D. Warga, A. Wojdan and M. Woods, *J. Med. Chem.*, 2000, **43**, 1203.

