Supplementary information

1. X-ray diffraction patterns of PANI

The powder X-ray diffraction patterns (PXRD) were performed on a Rigaku SmartLab 9kW ray diffractometer at room temperature, in paralle beam geometry employing Cu K α lines focused radiation (1.54059 Å, 1.54439 Å) at 9kW (45Kv, 200mA) power.

Fig. S1 X-ray diffraction patterns of PANI
2. Calculation of the estimated crystal size of PANI/Ag by Scherrer equation The relation between grain size and half-peak width of XRD peaks is given by Scherrer equation:

$$
d=K \lambda /(B \cos \theta)
$$

In the equation, λ is the wavelength ($\lambda=1.54060 \AA$ for $\mathrm{Cu} \mathrm{K} \alpha 1$), θ is the diffraction angle, B is the width at half height of the peak around θ, K is the correction factor ($\mathrm{K}=0.89$). The size of every crystal face, as calculated according to benchmark of standard silver peaks, was 67.2,58.1, 57.5, and 54.4 nm , respectively. And the average crystal size is 59.3 nm , which is consistent with the result of TEM image (Fig. 4 (e) (f)).

3. Particle size distribution of PANI micro-spheres and PANI micro-rods

The particle size distribution of PANI with different morphology is illustrated in Fig.4, which suggests that the PANI particles are normally distributed of a few microns, consistent with the SEM images of PANI particles.

Fig. S2. Particle size distribution of PANI micro-spheres and PANI micro-rods

4. The derivation process of rate constant

For the initial concentration of NaBH_{4} greatly exceeded that of 4nitrophenol, so it was assumed that the concentration of NaBH_{4} remained constant during the reaction. In other words, the reduction of 4-nitrophenol can be considered as pseudo-first-order reaction. So, there exists a linear correlation between $\ln \left(A_{t}\right)$ and the reaction time, which is shown in Fig.7. $\ln \left(A_{t}\right)$ represents the natural logarithm of absorption value at a time. The reaction rate follows first order kinetics, which can be illustrated in Eq. (1)

$$
\begin{equation*}
-\frac{d c}{d t}=k c \tag{1}
\end{equation*}
$$

The apparent rate constant in the reduction of 4-nitrophenol was calculated by
the following equations:
$\frac{-d c}{c}=k t$
$-\int_{c_{0}}^{c_{t}} \frac{d c}{c}=\int_{0}^{t} k d t$
$-\ln \left(\frac{c_{t}}{c_{0}}\right)=k t$
Under a certain wavelength

$$
\begin{equation*}
A=a c \tag{5}
\end{equation*}
$$

$k=\frac{\ln \left(A_{0} / A_{t}\right)}{t}=\frac{\left(\ln A_{0}-\ln A_{t}\right)}{t}$

Where t represents time, k represents the apparent rate constant, c_{0} represents the initial concentration of 4-nitrophenol, c_{t} represents the concentration of 4nitrophenol, which changes over time, A_{0} is the initial absorbance of 4nitrophenol, A is the absorbance of 4-nitrophenol, which changes over time, a is the proportionality constant.

