Supporting Information for

Multi-layers MoS₂ phototransistors as high performance photovoltaic cells and self-powered photodetectors

Xuying Zhong[†], Weichang Zhou^{†,*}, Yuehua Peng[†], Yong Zhou[†], Fang Zhou[†], Yanling Yin,[†] and Dongsheng Tang^{†,*}

[†] Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China

*Electronic mail: wchangzhou@hunnu.edu.cn_and dstang@hunnu.edu.cn_

Fig. S1 EDS of multi-layer MoS₂. Left panel indicates the collection position (see the movement of mark "+"). Right panel indicates the corresponding EDS spectrum and atomic percentage.

Fig. S2 The transfer curve at large negative bias voltage (-0.5V) under dark condition.

Fig. S3 (a) I_{ds} -V_{ds} of multi-layer MoS₂ device under illumination of a commercial white light LED

with 1 W power. (b) Electrical power $P_{el}{=}I_{ds}{\times}V_{ds}$ as a function of $V_{ds}.$

Fig. S4 The transfer curve at large negative bias voltage (-0.2V) under green illumination.

Fig. S5 The transfer curve at $V_{\text{ds}}\text{=-}0.05$ V under red illumination.