Supporting information for

A turn-on fluorescent pyrene-based chemosensor for Cu(II) with live cell application

Parthiban Venkatesan, Shu-Pao Wu*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan

*Corresponding author. Tel.: +886-3-5712121-ext56506; Fax: +886-3-5723764 E-mail: <u>spwu@mail.nctu.edu.tw</u>

Contents

- 1. Figure S1. ¹H NMR (300 MHz, DMSO-d₆) spectrum of PHP
- 2. Figure S2. ¹³C NMR (75 MHz, DMSO-d₆) spectrum of PHP
- 3. Figure S3. HR Mass (ESI) spectrum of PHP
- **4.** Figure S4. Absorbance changes (a) and Fluorescence response (b) of PHP (10 μ M) to different metal ions (50 μ M) in CH₃CN/H₂O (v/v = 4:6, 10 mM PBS, pH 7.4) solution. The excitation wavelength was 346 nm.
- **5.** Figure S5. Mass spectrum of PHP-Cu²⁺ complex
- 6. Figure S6. Calculated mass spectrum of PHP-Cu²⁺ complex
- 7. Figure S7 Detection limit for titration of Cu^{2+} (0.2~1.5 equiv) against ratio of fluorescence response for PHP (10 μ M) in acetonitrile-PBS buffer (0.01M, pH-7.4) (v/v = 4:6).
- **8.** Figure S8 IR Spectra of PHP and PHP-Cu²⁺ Complex
- **9.** Figure S9. Reversible cycles of PHP- Cu^{2+} with EDTA.
- **10. Figure S10**. Fluorescence response of PHP (10 μ M) to Cu²⁺ (10 μ M) or 50 μ M of other metal ions (the black bar portion) and to the mixture of other metal ions (15 μ M) with Cu²⁺ (15 μ M) (the gray bar portion) in acetonitrile-water (v/v = 3:7) solutions.

Figure S2. ¹³C NMR (75 MHz, DMSO-d₆) spectrum of PHP

Figure S3. HR Mass (ESI) spectrum of PHP

Figure S4. Absorbance changes (a) and Fluorescence response (b) of PHP (10 μ M) to different metal ions (50 μ M) in CH₃CN/H₂O (v/v = 4:6, 10 mM PBS, pH 7.4) solution. The excitation wavelength was 346 nm.

Figure S5. Mass spectrum of PHP-Cu²⁺ complex

Figure S6. Calculated mass spectrum of PHP-Cu²⁺ complex

Figure S7 Detection limit for titration of Cu²⁺ (0.2~1.5 equiv) against ratio of fluorescence response for PHP (10 μ M) in acetonitrile-PBS buffer (0.01M, pH-7.4) (v/v = 4:6). The excitation wavelength was 346 nm and observed wavelength was 389 nm. The limit of detection was 0.04 μ M of PHP for binding Cu²⁺ based on 3 × δ_{blank}/k (where δ_{blank} is the standard deviation of the blank solution and k is the slope of calibration plot). LOD =3*SD/Slope =3*1.624944/1.2249*10⁻⁸ =4.0×10⁻⁸M

Figure S8 IR Spectra of PHP and PHP-Cu²⁺ Complex

Figure S9. Reversible cycles of PHP-Cu²⁺ with EDTA.

Figure S10. Fluorescence response of PHP (10 μ M) to Cu²⁺ (10 μ M) or 50 μ M of other metal ions (the black bar portion) and to the mixture of other metal ions (15 μ M) with Cu²⁺ (15 μ M) (the gray bar portion) in acetonitrile-water (v/v = 3:7) solutions.