Electronics Supporting Information

Efficient oxidation of hydrocarbons over nanocrystalline Ce_{1-x}Sm_xO₂ (x= 0-0.1) synthesized using supercritical water

Sandip Kumar Pahari,^a Provas Pal,^a Apurba Sinhamahapatra,^a Arka Saha,^a Chiranjit Santra,^b Subhash Ch Ghosh,^a Biswajit Chowdhuri,^{b,*} Asit Baran Panda,^{a,*}

^aDiscipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research), G.B. Marg, Bhavnagar-364021, Gujarat, India.

^b Department of applied chemistry, Indian School of Mines, Dhanbad, India.

Fig. S1. (a) bright field image and corresponding STEM XEDS elemental maps of (b) Ce-L_{α}, (c) Sm- L_{α}. of the synthesized Ce_{0.95}Sm_{0.05}O₂.

Fig. S2. Reaction profile (conversion of ethyl benzene and selectivity of different products) obtained for the allylic oxidation of ethyl benzene over the prepared pure CeO_2 catalyst.

Fig. S3. Reaction profile (conversion of ethyl benzene and selectivity of different products) obtained for the allylic oxidation of ethyl benzene over the prepared pure CeO_2 - 2.5%Sm catalyst.

Fig. S4. Reaction profile (conversion of ethyl benzene and selectivity of different products) obtained for the allylic oxidation of ethyl benzene over the prepared pure CeO_2 - 5%Sm catalyst.

Fig. S5. Reaction profile (conversion of ethyl benzene and selectivity of different products) obtained for the allylic oxidation of ethyl benzene over the prepared pure CeO_2 - 7.5%Sm catalyst.

Fig. S6. Reaction profile (conversion of ethyl benzene and selectivity of different products) obtained for the allylic oxidation of ethyl benzene over the prepared pure CeO_2 - 10%Sm catalyst.

Fig. S7. Reusability (conversion of ethyl benzene and selectivity of Acetophenone) obtained for the allylic oxidation of ethyl benzene over the prepared pure CeO_2 -5%Sm catalyst.

Fig. S7.(a) XRD pattern, (b) TEM and (c) HR-TEM of the reused (after 5 time)catalyst.

From the TEM image it looks like the porosity has been decreased compared to the fresh catalyst. It is most probably due to the adsorbed organic substrate. However, from the HR-

TEM image it is evident that the crystallinity and morphology remained same as fresh caralyst.

Table S1Comparative study of catalytic activity of the synthesized $Ce_{0.95}Sm_{0.05}O_2$ catalyst with other reported catalyst towards ethyl benzene oxidation.

Catalyst	Oxidant	Conversion	Selectivi	Yield	Ref.
		(%)	ty (%)	(%)	
Ce _{0.95} Sm _{0.05} O ₂	30 wt.% aqueousH ₂ O ₂	90	87	78.3	Present work
Supported cobalt (II) Salen complex	oxygen/acetic acid	84 (a)	90	76	1
Ti-MCM-41	30 wt.% aqueousH ₂ O ₂	12	80	9.6	2
V-MCM-41	30 wt.% aqueousH ₂ O ₂	18	21	3.7	2
Metalloporphyrin covalently bound to silica	30 wt.% aqueousH ₂ O ₂	30.3	95.1	28.8	3
Pd (0) and Pd (II) nanotubes and nanoparticles on modified bentonite	tert- butylhydroper oxide(80%)	92.3	95.5	88.1	4
Mn catalyst supported on a modified nanosized SiO2/Al2O3	tert- butylhydroper oxide(80%)	84	86	72.2	5
Ni/13USY	molecular O ₂	21.5	76.4	16.3	6
Manganese containing MCM-41	tert- butylhydroper oxide(80%)	57.7	82	47.3	7
Vanadia supported on ceria	30 wt.% aqueousH ₂ O ₂	20.5	72.2	14.8	8
MnO ₄ ⁻¹ exchanged Mg–Al	molecular O ₂	22.6	98.4	22.2	9

hydrotalcite					
Ni-Al hydrotalcite	molecular O ₂	47	99.3	46.6	10
Nanocrystalline CeO ₂ (hydrothermal)	30 wt.% aqueousH ₂ O ₂	85	77	65.4	11

^(a) The conversion has been calculated based on selectivity and yield.

References:

- [1] F. Rajabi, R. Luque, J. H. Clark, B. Karimi, D. J. Macquarrie Catal. Commun. 12 (2011) 510–513
- [2] R. K. Jha, S. Shylesh, S. S. Bhoware, A. P. Singh Micropor. Mesopor. Mater. 95 (2006) 154–163
- [3] M. Ghiaci, F. Molaie, M. E. Sedaghat, N. Dorostkar Catal. Commun. 11 (2010) 694-699
- [4] M. Ghiacia, Z. Sadeghib, M. E. Sedaghata, H. Karimi-Maleha, J. Safaei-Ghomib, A. Gilc Appl. Catal. A: Gen. 381 (2010) 121–131
- [5] M. Arshadia, M. Ghiacia, A. Rahmaniana, H. Ghaziaskara, A. Gil Appl. Catal. B: Environ. 119–120 (2012) 81–90
- [6] G. Raju, P. Shiva Reddy, J. Ashok, B. Mahipal Reddy, A. Venugopal J. Natural Gas Chem. 17 (2008) 293–297
- [7] K. M. Parida, S. S. Dash J. Mol. Catal. A: Chem. 306 (2009) 54-61
- [8] T. Radhika, S. Sugunan Catal. Commun. 8 (2007) 150-156
- [9] V. R. Choudhary, J. R. Indurkar, V. S. Narkhede, R. Jha J. Catal. 227 (2004) 257-261
- [10] S. K. Jana, P. Wu, T. Tatsumi J. Catal. 240 (2006) 268–274
- [11] N. Sutradhar, A. Sinhamahapatra, S. K. Pahari, M. Jayachandran, B. Subramanian, H. C. Bajaj, A. B. Panda, J. Phys. Chem. C 115 (2011) 7628-7637