## Electrochemical-driven water reduction and oxidation catalyzed by an iron(III)

## complex supported by 2,3-bis(2-hydroxybenzylideneimino)-2,3-butenedinitrile

Ling-Zhi Fu, Ling-Ling Zhou, Shu-Zhong Zhan\*

College of Chemistry and Chemical Engineering, South China University of

Technology, Guangzhou 510640, China

## **Supplementary Materials**

Table of context

| 1 | Fig. S1. The UV spectrum of complex 1 in MeCN                                                                        |  |  |
|---|----------------------------------------------------------------------------------------------------------------------|--|--|
| 2 | Fig. S2. The UV spectrum of complex 1 in water.                                                                      |  |  |
| 3 | <b>Fig. S3.</b> The UV spectra of 0.10 mM complex <b>1</b> in 0.25 M buffered solutions in different pHs.            |  |  |
| 4 | <b>Fig. S4.</b> Cyclic voltammogram of 3.17 mM ligand in 0.10 M of [n-Bu <sub>4</sub> N]ClO <sub>4</sub>             |  |  |
|   | DMF solution at a glassy carbon electrode and a scan rate of 100 mV/s. (*)<br>Ferrocene internal standard.           |  |  |
| 5 | Fig. S5. (a) Scan rate dependence of precatalytic waves for a 3.17 mM                                                |  |  |
|   | solution of complex 1 in DMF, at scan rates from 50 to 250 mV/s. (b) Plot of                                         |  |  |
|   | current vs $v^{1/2}$ at -0.08 V (Fe <sup>III/II</sup> ) (blue line) and -1.55 V (Fe <sup>II/I</sup> ) (black line).  |  |  |
|   | Conditions: 0.10 M [n-Bu <sub>4</sub> N]ClO <sub>4</sub> as supporting electrolyte, GC working                       |  |  |
|   | electrode (1.0 mm diameter), Pt counter electrode, Ag/AgNO3 reference                                                |  |  |
|   | electrode, (*) ferrocene internal standard.                                                                          |  |  |
|   | <b>Fig. S6</b> . CV of 3.17 mM FeCl <sub>3</sub> in 0.10 M of [n-Bu <sub>4</sub> N]ClO <sub>4</sub> DMF solution. GC |  |  |
| 6 | working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO <sub>3</sub> reference                              |  |  |
|   | electrode, scan rate 100 mV/s.                                                                                       |  |  |

|    | Fig. S7. CV of ligand (3.17 mM) and FeCl <sub>3</sub> (3.17 mM) (1:1) in 0.1 M of [n-                                                                |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7  | Bu <sub>4</sub> N]ClO <sub>4</sub> DMF solution. GC working electrode (1 mm diameter), Pt counter                                                    |  |  |
|    | electrode, Ag/AgNO <sub>3</sub> reference electrode, scan rate 100 mV/s.                                                                             |  |  |
| 8  | Fig. S8. Turnover frequency (mol $H_2$ /mol catalysts/h) for electrocatalystic hydrogen production by complex 1 (5.80 $\mu$ M) under overpotentials. |  |  |
| 9  | Fig. S9. Cyclic voltammograms of complex 1 (1.71 mM) in different pHs.                                                                               |  |  |
|    | Conditions: 0.25 M phosphate buffered solutions (KH <sub>2</sub> PO <sub>4</sub> + NaOH), GC                                                         |  |  |
|    | working electrode (1.0 mm diameter), Pt wire counter electrode, Ag/AgCl                                                                              |  |  |
|    | reference electrode.                                                                                                                                 |  |  |
| 10 | Fig. S10. Cyclic voltammogram of complex 1 (1.05 mM) in different scan rate.                                                                         |  |  |
|    | Conditions: 0.25 M phosphate buffered solution (pH 7.0), GC working                                                                                  |  |  |
|    | electrode (1.0 mm diameter), Pt wire counter electrode, Ag/AgCl reference                                                                            |  |  |
|    | electrode.                                                                                                                                           |  |  |
| 11 | Fig. S11. Bubbles form                                                                                                                               |  |  |
|    | Fig. S12. (a) GC traces after a 1h controlled-potential electrolysis at $-1.45$ V vs                                                                 |  |  |
|    | Ag/AgCl of 17.4 $\mu$ M complex 1 in 0.25 M buffer, pH 7.0. A standard of CH <sub>4</sub>                                                            |  |  |
|    | was added for calibration purposes. (b) Measured (red) and calculated (black)                                                                        |  |  |
|    | pH changes assuming a 100% Faradic efficiency of complex 1 during                                                                                    |  |  |
| 12 | electrolysis. (the theoretical pH change over time can be calculated by the                                                                          |  |  |
|    | equation of $pH = 14 + \lg \frac{\sum It}{FV}$ where I = current (A), t = time (s), F = Faraday                                                      |  |  |
|    | constant (96485 C/mol), V = solution volume (0.04 L)).                                                                                               |  |  |
| 13 | Fig. S13. (a) Scan rate dependence of precatalytic waves for $Fe^{IV/III}$ and $Fe^{V/IV}$                                                           |  |  |
|    | couples from a 1.71 mM solution of complex 1 in buffer (pH 10.5), at scan                                                                            |  |  |
|    | rates from 50 to 200 mV/s. (b) Linear fitting plot of $i_{cat} vs v^{-1/2}$ for Fe <sup>IV/III</sup> . (c)                                           |  |  |
|    |                                                                                                                                                      |  |  |

|    | Fig. S14. (a) Scan rate dependence of precatalytic waves for a 1.71 mM                                              |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| 14 | solution of complex 1 in buffer (pH 10.5), at scan rates from 50 to 200 mV/s.                                       |  |  |  |
|    | (b) Linear fitting plot of $i_{cat}/i_d$ vs v <sup>-1/2</sup> (Fe <sup>V/IV</sup> ) for TOF calculation. (c) Linear |  |  |  |
|    | fitting plot of $i_{cat}/i_d$ vs v <sup>-1/2</sup> (Fe <sup>IV/III</sup> ) for TOF calculation.                     |  |  |  |
| 15 | <b>Fig. S15.</b> Cyclic voltammograms of complex <b>l</b> in different concentrations.                              |  |  |  |
| 16 | Fig. S16. ICP of a glassy carbon electrode after 4 h electrolysis. There was no                                     |  |  |  |
|    | significant change in the ICP after a 4 h electrolysis period.                                                      |  |  |  |
| 17 | Fig. S17. ICP of an ITO electrode after 4 h electrolysis. There was no                                              |  |  |  |
|    | significant change in the ICP after a 4 h electrolysis period.                                                      |  |  |  |
| 18 | Eq. S1. The calculation of TOF-1 (DMF)                                                                              |  |  |  |
| 19 | Eq. S2. The calculation of TOF-2 (Buffer, pH 7.0)                                                                   |  |  |  |
| 20 | Eq. S3. The calculation of TOF-3                                                                                    |  |  |  |
| 21 | Eq. S4. The calculation of TOF-4                                                                                    |  |  |  |
| 22 | Table S1 Crystal data and structure refinement for complex 1                                                        |  |  |  |
| 23 | Table S2 Selected bond lengths (Å) and angles (°) for 1                                                             |  |  |  |



Fig. S1. The UV spectrum of complex 1 in MeCN.



Fig. S2. The UV spectrum of complex 1 in water.



Fig. S3. The UV spectra of 0.10 mM complex 1 in 0.25 M buffered solutions in different pHs.



Fig. S4. Cyclic voltammogram of 3.17 mM ligand in 0.10 M of  $[n-Bu_4N]ClO_4$  DMF solution at a glassy carbon electrode and a scan rate of 100 mV/s. (\*) ferrocene internal standard.



**Fig. S5.** (a) Scan rate dependence of precatalytic waves for a 3.17 mM solution of complex **1** in DMF, at scan rates from 50 to 250 mV/s. (b) Plot of current  $vs v^{1/2}$  at - 0.08 V (Fe<sup>III/II</sup>) (blue line) and -1.55 V (Fe<sup>III/I</sup>) (black line). Conditions: 0.10 M [n-Bu<sub>4</sub>N]ClO<sub>4</sub> as supporting electrolyte, GC working electrode (1.0 mm diameter), Pt counter electrode, Ag/AgNO<sub>3</sub> reference electrode, (\*) ferrocene internal standard.



**Fig. S6**. CV of 3.17 mM FeCl<sub>3</sub> in 0.10 M of [n-Bu<sub>4</sub>N]ClO<sub>4</sub> DMF solution. GC working electrode (1.0 mm diameter), Pt counter electrode, Ag/AgNO<sub>3</sub> reference electrode, scan rate 100 mV/s.



Fig. S7. CV of ligand (3.17 mM) and  $FeCl_3$  (3.17 mM) (1:1) in 0.10 M of [n-Bu<sub>4</sub>N]ClO<sub>4</sub> DMF solution. GC working electrode (1.0 mm diameter), Pt counter electrode, Ag/AgNO<sub>3</sub> reference electrode, scan rate 100 mV/s.



Fig. S8. Turnover frequency (mol  $H_2$ /mol catalysts/h) for electrocatalystic hydrogen production by complex 1 (5.80  $\mu$ M) under overpotentials.



Fig. S9. Cyclic voltammograms of complex 1 (1.71 mM) in different pHs. Conditions: 0.25 M phosphate buffered solutions ( $KH_2PO_4 + NaOH$ ), GC working electrode (1.0 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.



**Fig. S10.** Cyclic voltammogram of complex **1** (1.05 mM) in different scan rate. Conditions: 0.25 M phosphate buffered solution (pH 7.0), GC working electrode (1.0 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.



Fig. S11. Bubble forms



**Fig. S12**. (a) GC traces after a 1h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 17.4  $\mu$ M complex **1** in 0.25 M buffer, pH 7.0. A standard of CH<sub>4</sub> was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex **1** during electrolysis. (the theoretical

pH change over time can be calculated by the equation of  $pH = 14 + lg \frac{\sum It}{FV}$  where I

= current (A), t = time (s), F = Faraday constant (96485 C/mol), V = solution volume (0.04 L)).





**Fig. S13.** (a) Scan rate dependence of precatalytic waves for Fe<sup>IV/III</sup> and Fe<sup>V/IV</sup> couples from a 1.71 mM solution of complex **1** in buffer (pH 10.5), at scan rates from 50 to 200 mV/s. (b) Linear fitting plot of  $i_{cat} vs v^{-1/2}$  for Fe<sup>IV/III</sup>. (c) Linear fitting plot of  $i_{cat} vs v^{-1/2}$  for Fe<sup>V/IV</sup>.





**Fig. S14.** (a) Scan rate dependence of precatalytic wave for a 1.71 mM solution of complex **1** in buffer (pH 10.5), at scan rates from 50 to 200 mV/s. (b) Linear fitting plot of  $i_{cat}/i_d vs v^{-1/2}$  (Fe<sup>V/IV</sup>) for TOF calculation. (c) Linear fitting plot of  $i_{cat}/i_d vs v^{-1/2}$  (Fe<sup>IV/III</sup>) for TOF calculation.



Fig. S15. Cyclic voltammograms of complex l in different concentrations.





**Fig. S16.** ICP of a glassy carbon electrode after 4 h electrolysis. There was no significant change in the ICP after a 4 h electrolysis period.





**Fig. S17.** ICP of an ITO electrode after 4 h electrolysis. There was no significant change in the ICP after a 4 h electrolysis period.

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.01535C \times 3600}{96480C \cdot mol^{-1} \times 2 \times 0.232 \times 10^{-6} \, mol \times 120} = 10.25h^{-1}$$

Eq. S1. The calculation of TOF-1 (DMF)

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.624C \times 3600}{96480C \cdot mol^{-1} \times 2 \times 0.12 \times 10^{-6} \, mol \times 120} = 808.46h^{-1}$$

Eq. S2. The calculation of TOF-2 (Buffer, pH 7.0)

$$\frac{i_c}{i_p} = 0.359 \frac{n_c}{n_p^{3/2}} \sqrt{k_{cat}/\nu}$$
(2)  
y=0.4463x-2.7450  
n=4; n\_p=1  

$$\frac{i_c}{i_p} = 0.359 \frac{n_c}{n_p^{3/2}} \sqrt{k_{cat}/\nu} = 1.413 \sqrt{k_{cat}} \times \nu^{-1/2}$$
1.413 $\sqrt{k_{cat}} = 0.4463$   
 $k_{cat} = 0.01 s^{-1}$ 

**Eq. S3.** The calculation of TOF-3

$$\frac{i_c}{i_p} = 0.359 \frac{n_c}{n_p^{3/2}} \sqrt{k_{cat}/\nu}$$
(2)  
y=--1.302x-38.697  
n=4; n\_p=1  

$$\frac{i_c}{i_p} = 0.359 \frac{n_c}{n_p^{3/2}} \sqrt{k_{cat}/\nu} = 1.413 \sqrt{k_{cat}} \times \nu^{-1/2}$$
1.413 $\sqrt{k_{cat}} = -1.302$   
 $k_{cat} = 0.849 s^{-1}$ 

**Eq. S4.** The calculation of TOF-4

| Crystal data                      | Complex 1                                                         |  |
|-----------------------------------|-------------------------------------------------------------------|--|
| Empirical formula                 | C <sub>18</sub> H <sub>12</sub> ClFeN <sub>4</sub> O <sub>3</sub> |  |
| Formula weight                    | 423.62                                                            |  |
| Temperature/K                     | 293(2)                                                            |  |
| $\lambda(\text{\AA})$             | 0.71073                                                           |  |
| Crystal system                    | Triclinic                                                         |  |
| Space group                       | P-1                                                               |  |
| a/Å                               | 6.9901(7)                                                         |  |
| b/Å                               | 10.9240(11)                                                       |  |
| c/Å                               | 12.1442(13)                                                       |  |
| α/o                               | 97.445(2)                                                         |  |
| β/°                               | 98.875(2)                                                         |  |
| $\gamma/^{o}$                     | 105.900(2)                                                        |  |
| V/Å <sup>3</sup>                  | 866.64(15)                                                        |  |
| Z                                 | 2                                                                 |  |
| Dc/Mgm <sup>-3</sup>              | 1.623                                                             |  |
| F(000)                            | 430                                                               |  |
| range for data collection         | 2.37 to 27.60deg                                                  |  |
| Reflections collected/unique      | 10846/3948                                                        |  |
| Goodness-of-fit on F <sup>2</sup> | 1.043                                                             |  |
| Final R indices [I>2sigma(I)]     | $R_1 = 0.0306$                                                    |  |
|                                   | $wR_2 = 0.0870$                                                   |  |
| D indiana (all data)              | $R_1 = 0.0395$                                                    |  |
| K muices (an data)                | $wR_2 = 0.0922$                                                   |  |

Table S1 Crystal data and structure refinement for complex 1

Table S2 Selected bond lengths (Å) and angles (°) for 1

| Fe(1)-O(2)       | 1.8791(14) | Fe(1)-O(1)      | 1.9086(13) |
|------------------|------------|-----------------|------------|
| Fe(1)-N(3)       | 2.1263(15) | Fe(1)-N(4)      | 2.1317(15) |
| Fe(1)-O(3)       | 2.2086(13) | Fe(1)-Cl(1)     | 2.3098(6)  |
|                  |            |                 |            |
| O(2)-Fe(1)-O(1)  | 103.59(6)  | O(2)-Fe(1)-N(3) | 162.05(6)  |
| O(1)-Fe(1)-N(3)  | 88.82(6)   | O(2)-Fe(1)-N(4) | 87.98(6)   |
| O(1)-Fe(1)-N(4)  | 162.52(6)  | N(3)-Fe(1)-N(4) | 77.20(6)   |
| O(2)-Fe(1)-O(3)  | 86.39(6)   | O(1)-Fe(1)-O(3) | 86.53(6)   |
| N(3)-Fe(1)-O(3)  | 81.40(5)   | N(4)-Fe(1)-O(3) | 81.10(6)   |
| O(3)-Fe(1)-Cl(1) | 171.71(4)  |                 |            |