Electronic Supporting Information

Radiation sensitive hybrid polymer based on Mn-Anderson polyoxometalate cluster and a UV active organic monomer: synergistic effects lead to improved photocurrent in a photoresponse device

Vishwanath Kalyani, V. S. V. Satyanarayana, Abdus Salam Sarkar, Ashwani Kumar, Suman K. Pal, Subrata Ghosh, Kenneth E. Gonsalves,* Chullikkattil P. Pradeep*[†]

[†] School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175 001, Himachal Pradesh, India.

Table of Contents

Page No:

1.	Materials and Instrumentation	2
2.	Synthesis of POM-MAPDST Hybrid Polymer	2
3.	IR spectrum of POM-MAPDST Hybrid Polymer	3
4.	Fabrication and Characterization of Devices	3
5.	TGA curve & ¹⁹ F NMR Spectrum of POM-MAPDST Hybrid Polymer	4
6.	GPC Curve of the POM-MAPDST Hybrid Polymer	5
7.	TEM images of the POM-MAPDST Hybrid Polymer	5
8.	EDX Analysis of POM-MAPDST Hybrid Polymer	6
9.	Cyclic Voltammogram of POM-MAPDST Hybrid Polymer	7
10.	References	8

Materials and Instrumentation

Triethylamine and acetonitrile were distilled over CaH₂ and acetonitrile was stored over 4 Å molecular sieves prior to the use. The MAPDST monomer, its homopolymer and methacryloyl chloride were synthesized according to the literature procedure.¹ AIBN (2,2'-azobis(2-methylpropionitrile)) was purified via recrystallisation in methanol prior to the use. Spectroscopic grade chloroform was used as received from Merck. The tris(hydroxymethyl)aminomethane (TRIS) grafted Mn-Anderson cluster, $(TBA)_3[MnMo_6O_{18}{OCH_2}_2], 1, was synthesized according to the reported procedure.²$ grafted Methacrvlovl group organic-POM hvbrid monomer $(TBA)_3[MnMo_6O_{18}{(OCH_2)_3CNHCO(CH_3)C=CH_2}_2]$ (2), was synthesized by refluxing the acetonitrile solution of compound 1 with methacryloyl chloride in presence of triethylamine. Formation of compound 2 was confirmed by comparing its analytical and spectroscopic data with literature report.³ POM-MMA hybrid polymer was synthesized following a reported procedure.⁴

The ¹H NMR spectra were recorded on a 500 MHz JEOL JNM instrument in DMSO- d_6 /CDCl₃ solvent. FT-IR spectra were obtained from samples dispersed in KBr pellets using Perkin Elmer, Spectrum 2 Spectrophotometer. Thermogravimetric analyses (TGA) were done on a Netzsch Model STA 449 F1 JUPITER instrument at a heating rate of 10 °C/min under N₂ atmosphere. Gel-permeation chromatography (GPC) analysis of the hybrid polymer was conducted on PL gel mixed-C 5 µm columns, using Agilent Technologies 1260 Infinity Series instrument. DMF with 0.1% LiBr was used as a mobile phase at a flow rate of 1 mL/min and the molecular weight was determined by using PEO and PEG standards. Thickness of the POM/polymer hybrids and MAPDST homopolymer films in the devices were measured by a Bruker Optical Profiler (GTK-14-0161). Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis of the sample were performed using a FEI Tecnai G2 20 S-Twin microscope operating at 200 kV.

Synthesis of POM-MAPDST Hybrid Polymer

A typical free-radical polymerization was carried out as follows: in a dry Schlenk flask, organic-POM hybrid monomer (0.1 g, 0.048 mmol), MAPDST monomer (0.9 g, 2.41 mmol), AIBN (10 mg, 0.060 mmol) and dry acetonitrile (3 mL) were added under N₂ atmosphere. After three freeze-pump-thaw cycles, the flask was placed in a constant temperature oil bath at 70 °C for 2 days. The polymerization was stopped by cooling the flask to room temperature. The viscous reaction mixture thus obtained was slowly added into excess of diethyl ether with constant stirring to give a light orange colored precipitate. The obtained solid was washed thrice with ether and dried in a temperature controlled hot air oven at 40 °C for 24 h. Yield: 690 mg, 69 %. ¹H NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm H} = 8.04$ (2H, s br, *m*,*m*'-ArH), 7.43 (2H, s br, *o*,*o*'-ArH), 3.23 (6H, s, S(CH₃)₂), 1.8-2.8 (2H, br peak, CH₂), 1.0-1.7 (3H, br peak, CH₃); IR (KBr pellet, v/cm⁻¹): 3111, 3027, 2939 (C–H), 1754 (C=O), 1213, 1255 (C-F), 948, 927 (Mo=O), and 807, 636 (Mo-O-Mo) vibrations. ¹⁹F NMR (500 MHz, DMSO-*d*₆): $\delta_{\rm F} = -77.6$ (3F, s, CF₃). GPC (DMF + 0.1 % LiBr, eluent): $M_{\rm w} = 6312$, $M_{\rm n} = 4114$, PDI = 1.53.

Figure S1. IR spectrum of POM-MAPDST hybrid polymer

Fabrication and Characterization of Devices

ITO coated glass substrates (Sigma Aldrich, sheet resistance 8-12 Ω /sq) were cleaned with a special detergent followed by ultra-sonication in deionized water, acetone and isopropyl alcohol. Dried in an oven at 100 °C for 30 min. The POM-MAPDST hybrid polymer and MAPDST homopolymer (0.8 wt %) solutions in acetonitrile and POM-MMA hybrid polymer (0.8 wt %) in anisole solvent were prepared and spin coated on the ITO coated glass substrates with a spinning rate of 5000 rpm for 60 s to achieve a thickness of ~70 nm. The films of the polymer were dried and a layer of Al (70 nm thick) was deposited over it using a thermal evaporator at a vacuum of 10⁻⁶ torr. The photocurrent was measured using Keithley 2400 source meter unit under simulated 100 mW/cm² AM1.5G irradiation (wavelength range of the filter: 350-1800 nm) from an OAI Trisol solar simulator calibrated with a standard Si solar cell.

Figure S2. ((a), above) Thermo gravimetric (TG) curve (Inset: DSC curve after first heating cycle) at a heating rate of 10 °C/min under N₂ atmosphere and ((b), below) ¹⁹F NMR spectra of the POM-MAPDST hybrid polymer in DMSO- d_{6} .

Figure S3. GPC curve of the POM-MAPDST hybrid polymer in DMF solvent (0.1 % LiBr) at a flow rate of 1 ml/min

Figure S4. TEM images of the POM-MAPDST hybrid polymer. Drop cast from the dispersion of POM-MAPDST hybrid polymer in H_2O . (a) is showing agglomerates of particles ranging from 200 to 250nm.

Figure S5. EDX analysis showing signals of molybdenum, manganese, sulfur etc. elements in the POM-MAPDST hybrid polymer. The analysis was done on Cu grids. The weight percentage of Mo : Mn is calculated to be (11.9:1) which is near to the calculated value (10.46:1) expected for Mn-Anderson cluster.

Figure S6. The cyclic voltammogram of POM-MAPDST hybrid polymer in DMSO solutions at 100 mV/s scan rate (above) and at 100, 200, 300 mV/s scan rates (below). The oxidation peak corresponding to Mn (III) to Mn (IV) appears at 1.2 V. Two peaks appearing at -1.15 and -1.6 could be due to the reduction of Mn(IV) and Mn(III) species. Experimental conditions: solvent-DMSO, electrolyte - tetra butyl ammonium hexafluorophosphate, working electrode - glassy carbon, reference electrode-Ag/AgCl, counter electrode - Pt wire.

References

- 1. V. Singh, V. S. V. Satyanarayana, S. K. Sharma, S. Ghosh and K. E. Gonsalves, J. Mater. Chem. C, 2014, 2, 2118-2122.
- 2. P. R. Marcoux, B. Hasenknopf, J. Vaissermann and P. Gouzerh, Eur. J. Inorg. Chem., 2003, 2003, 2406-2412.
- B. Hu, C. Wang, J. Wang, J. Gao, K. Wang, J. Wu, G. Zhang, W. Cheng, B. Venkateswarlu, M. Wang, P. S. Lee and Q. Zhang, *Chem. Sci.*, 2014, 5, 3404-3408.
- 4. B.Hu, C. Wang, J. Wang, J. Gao, K. Wang, J. Wu, G. Zhang, W. Cheng, B. Venkateswarlu, M. Wang, P. S. Lee and Q. Zhang, *Chem. Sci.*, 2014, 5, 3404-3408.
