Supporting information

Synthesis of 5-Aryl-3-C-Glycosyl- and Unsymmetrical 3,5-Diaryl- 1,2,4-Triazoles from Alkylidene-Amidrazones

Béla Szőcs, Éva Bokor, Katalin E. Szabó, Attila Kiss-Szikszai, Marietta Tóth,* and László Somsák*
Department of Organic Chemistry, University of Debrecen, POB 20, H-4010 Debrecen, Hungary

Contents
SYNTHETIC PROCEDURES AND COMPOUND CHARACTERIZATION 2
O-Peracylated N-[C-(β-D-glycopyranosyl)methylideneamino]guanidine (8) and $N^{1}-[C-(\beta-\mathrm{D}-$ glycopyranosyl)methylidene]arenecarboxamidrazones (9-13) 2
N^{l}-Arylidene- C-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)formamidrazones (18-20) 12
Transformation of N^{l}-arylidene- C-(2,3,4,6-tetra- O-benzoyl- β-D-glucopyranosyl)form- amidrazones (18-20) by PIDA 17
O-Peracylated N-arenecarboximidoyl-C-(β-D-glycopyranosyl)carbohydrazonoyl bromides (24-29) 18
O-peracylated 5-(β-D-glycopyranosyl)-3-substituted-1,2,4-triazoles (21, 30-33) 26
N^{I}-arylidene-arenecarboxamidrazones $\mathbf{(3 5 , ~ 3 6)}$ 29
3,5-disubstituted-1,2,4-triazoles (39, 40) 39
Analysis of reaction mixtures by LCMS 47
References 52

[^0]
SYNTHETIC PROCEDURES AND COMPOUND CHARACTERIZATION

General procedure I for the synthesis of \boldsymbol{O}-peracylated \boldsymbol{N}-[C-(β-D-glycopyranosyl)methylideneamino]guanidine (8) and N^{1}-[C-(β-D-glycopyranosyl)methylidene]arenecarboxamidrazones (9-13)

Aminoguanidine $\times \mathrm{H}_{2} \mathrm{CO}_{3}(4,0.50 \mathrm{mmol})$ or an arenecarboxamidrazone $(5-7,0.50 \mathrm{mmol})$ was dissolved in a mixture of pyridine $(1.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$, and stirred for 20 min at rt . Then AcOH (0.9 mL), Raney-Ni (0.38 g , from an aqueous suspension, Merck), $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ $(0.20 \mathrm{~g}, 2.27 \mathrm{mmol})$, and the corresponding O-peracylated β-D-glycopyranosyl cyanide (1-3, 0.25 mmol) were added to the mixture. The reaction mixture was vigorously stirred and heated at $40^{\circ} \mathrm{C}$. When the reaction was complete (TLC, EtOAc/hexane $=1: 2$) the insoluble materials were filtered off with suction, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer of the filtrate was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 6 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo, traces of pyridine were removed by repeated co-evaporations with toluene. The residue was purified by column chromatography.

N-[C-(2,3,4,6-Tetra-O-benzoyl- β-D-glucopyranosyl)methylideneamino]guanidine (8)

 Prepared from $1^{1}(3.00 \mathrm{~g}, 4.95 \mathrm{mmol})$ and aminoguanidine $\times \mathrm{H}_{2} \mathrm{CO}_{3}(4,1.35 \mathrm{~g}, 9.90 \mathrm{mmol})$ according to General procedure I. Purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=\right.$ 16:1) to yield $\mathbf{8}$ as a brownish amorphous solid ($2.1 \mathrm{~g}, 64 \%) . R_{\mathrm{f}} 0.22\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=16: 1\right)$; $[\alpha]_{\mathrm{D}}=+45\left(\mathrm{c} 0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04-7.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.94-$ 7.89 (m, 2 H, Ar), 7.87-7.80 (m, 4 H, Ar), 7.55-7.23 (m, $13 \mathrm{H}, \mathrm{Ar}, \mathrm{CH}=\mathrm{N}$), 6.58 (br s, $4 \mathrm{H}, 2$ $\times \mathrm{NH}, \mathrm{NH}_{2}$), $5.97,5.88,5.69$ (3 pseudo $\mathrm{t}, J=9.6,10.0 \mathrm{~Hz}$ in each $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4,3 \mathrm{H}$), 4.64 (dd, $J=2.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.48(\mathrm{dd}, J=4.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.46$ (dd, $J=5.0,12.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,165.9$, 165.8, $165.1(\mathrm{CO}), 158.2(\mathrm{C}=\mathrm{NH}), 143.1(\mathrm{CH}=\mathrm{N}), 133.5-128.3(\mathrm{Ar}), 76.8,76.2,74.1,69.8$,69.4 (C-1-C-5), 63.1 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{9}$ (664.66): C, 65.05, H, 4.85; N, 8.43. Found: C, 65.14; H, 4.93; N, 8.39.

N^{1}-[C-(2,3,4,6-Tetra- O-benzoyl- β-D-glucopyranosyl)methylidene]benzamidrazone (9)

Prepared from $\mathbf{1}^{1}(2.52 \mathrm{~g}, 4.16 \mathrm{mmol})$ and benzamidrazone ($\left.5,1.12 \mathrm{~g}, 8.32 \mathrm{mmol}\right)$ according to General procedure I. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=1: 2)$ to yield the title compound 9 as a white amorphous solid $(1.45 \mathrm{~g}, 48 \%) . R_{\mathrm{f}} 0.50(\mathrm{EtOAc} / \mathrm{hexane}=$ 2:3); $[\alpha]_{\mathrm{D}}=+16\left(\mathrm{c} 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.04-7.23(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ar}$, $\mathrm{CH}=\mathrm{N}$), 6.06-5.99 (strongly coupled m, $2 \mathrm{H}, \mathrm{H}-2$ and/or $\mathrm{H}-3$ and/or $\mathrm{H}-4$), $5.80-5.58(\mathrm{~m}, 3 \mathrm{H}$, H-2 or H-3 or H-4, NH2), $4.67(\mathrm{dd}, J=2.8,12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.62(\mathrm{dd}, J=2.7,9.4 \mathrm{~Hz}, 1$ H, H-1), 4.50 (dd, $J=5.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.26$ (ddd, $J=2.8,5.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,165.8,165.6,165.1(\mathrm{CO}), 160.6(\mathrm{C}=\mathrm{NH}), 151.3$ $(\mathrm{CH}=\mathrm{N}), 133.3-126.5$ (Ar), 77.1, 76.1, 74.4, 70.0, 69.5 (C-1-C-5), 63.1 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{9}$ (725.74): C, 69.51; H, 4.86; N, 5.79. Found: C, 69.41; H, 4.76; N, 5.71.

N^{1}-[C-(2,3,4,6-Tetra- O-benzoyl- β-D-glucopyranosyl)methylidene]pyridine-2-

carboxamidrazone (10) Prepared from $\mathbf{1}^{1}(2.00 \mathrm{~g}, 3.31 \mathrm{mmol})$ and pyridine-2-
carboxamidrazone ($6,0.90 \mathrm{~g}, 6.62 \mathrm{mmol}$) according to General procedure I. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=1: 1)$ to yield the title compound $\mathbf{1 0}$ as a white amorphous solid ($1.18 \mathrm{~g}, 49 \%) . R_{\mathrm{f}} 0.55(\mathrm{EtOAc} /$ hexane $=1: 1) ;[\alpha]_{\mathrm{D}}=+59\left(\mathrm{c} 0.28, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.45-7.21(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}, \mathrm{CH}=\mathrm{N}), 6.43\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.10-$ 6.02 (strongly coupled m, 2 H, H-2 and/or H-3 and/or H-4), 5.80 (pseudo t, $J=9.3,9.6 \mathrm{~Hz}, 1$ H, H-2 or H-3 or H-4), 4.70 (dd, $J=3.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.66$ (dd, $J=4.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-1), 4.54 (dd, $J=5.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.30$ (ddd, $J=3.0,5.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9,165.7,165.5,165.0(\mathrm{CO}), 157.7(\mathrm{C}=\mathrm{NH}), 151.5$ $(\mathrm{CH}=\mathrm{N}), 149.6,148.0,136.3-121.3(\mathrm{Ar}), 77.1,76.1,74.3,70.0,69.4$ (C-1-C-5), $63.0(\mathrm{C}-6)$
ppm. Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{9}$ (726.73): C, 67.76, H, 4.72; N, 7.71. Found: C, 67.65; H, 4.62; N, 7.61 .

N^{I}-[C-(2,3,4,6-Tetra-O-benzoyl- β-d-glucopyranosyl)methylidene]naphthalene-2-

 carboxamidrazone (11) Prepared from $\mathbf{1}^{1}(1.54 \mathrm{~g}, 2.55 \mathrm{mmol})$ and naphthalene-2carboxamidrazone ($7,0.96 \mathrm{~g}, 5.10 \mathrm{mmol}$) according to General procedure I. Purified by column chromatography ($\mathrm{EtOAc} /$ hexane $=1: 2$) to yield the title compound $\mathbf{1 1}$ as a white amorphous solid (1.00 g, 51\%). $R_{\mathrm{f}} 0.44(\mathrm{EtOAc} /$ hexane $=1: 2) ;[\alpha]_{\mathrm{D}}=+1\left(\mathrm{c} 1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=8.13-7.21(\mathrm{~m}, 28 \mathrm{H}, \mathrm{Ar}, \mathrm{CH}=\mathrm{N}), 6.09-6.01$ (m, $2 \mathrm{H}, \mathrm{H}-2$ and/or H-3 and/or H-4), around 6 (very br s, NH_{2}), 5.77 (pseudo $\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ or H-3 or H4), 4.67 (dd, $J=2.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.63(\mathrm{dd}, J=4.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.51(\mathrm{dd}, J=$ $4.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 4.24 (ddd, $J=2.7,4.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=166.1,165.9,165.7,165.1(\mathrm{CO}), 160.8(\mathrm{C}=\mathrm{NH}), 151.4(\mathrm{CH}=\mathrm{N}), 134.3-123.7$ (Ar), 77.1, 76.1, 74.4, 70.0, 69.5 (C-1-C-5), 63.1 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{46} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{9}$ (775.80): C, 71.22; H, 4.81; N, 5.42. Found: C, 71.11; H, 4.72; N, 5.51.

N^{I}-[C-(2,3,4-Tri-O-benzoyl- β-D-xylopyranosyl)methylidene]benzamidrazone (12)
Prepared from $\mathbf{2}^{2}(1.00 \mathrm{~g}, 2.12 \mathrm{mmol})$ and benzamidrazone $(5,0.58 \mathrm{~g}, 4.3 \mathrm{mmol})$ according to General procedure I. Purified by column chromatography ($\mathrm{EtOAc} /$ hexane $=2: 3$) to yield the title compound $\mathbf{1 2}$ as a white amorphous solid $(0.76 \mathrm{~g}, 65 \%) . R_{\mathrm{f}} 0.31(\mathrm{EtOAc} /$ hexane $=2: 3)$; $[\alpha]_{\mathrm{D}}=-4\left(\mathrm{c} 0.29, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.12-7.23(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar}, \mathrm{CH}=\mathrm{N})$, 5.96, 5.93 (2 pseudo t, $J=9.1,9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3$), 5.61 (br s, $1 \mathrm{H}, \mathrm{NH}$), 5.44 (ddd, $J=$ 5.3, 9.4, $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.77 (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.53-4.41 (m, $2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-5 \mathrm{a}$), 3.68 (pseudo $\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9,165.7,165.5(\mathrm{CO})$, $160.6(\mathrm{C}=\mathrm{NH}), 151.9(\mathrm{CH}=\mathrm{N}), 133.5-126.6(\mathrm{Ar}), 77.5,73.7,70.0,69.9(\mathrm{C}-1-\mathrm{C}-4), 66.9(\mathrm{C}-5)$ ppm. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7}$ (591.61): C, 69.03, H, 4.94; N, 7.10. Found: C, 69.15; H, 5.07; N, 7.00.

N^{I}-[C-(2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl)methylidene]benzamidrazone (13)

Prepared from $\mathbf{3}^{3,4}(1.00 \mathrm{~g}, 2.80 \mathrm{mmol})$ and benzamidrazone $(5,0.76 \mathrm{~g}, 5.6 \mathrm{mmol})$ according to General procedure I. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=2: 3)$ to yield the title compound 13 as a white amorphous solid $(0.86 \mathrm{~g}, 64 \%) . R_{\mathrm{f}} 0.28(\mathrm{EtOAc} /$ hexane $=$ $1: 1) ;[\alpha]_{\mathrm{D}}=+20\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.85-7.37(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}$, $\mathrm{CH}=\mathrm{N}$), 5.77 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 5.62 (pseudo $\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $5.47(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 5.13 (dd, $J=3.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.22(\mathrm{dd}, J=4.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.16-4.08(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.17,2.05,2.01,2.00\left(4 \mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=170.3,170.2,170.1(\mathrm{CO}), 160.6(\mathrm{C}=\mathrm{NH}), 151.6(\mathrm{CH}=\mathrm{N}), 133.5$, 130.8, 128.5, 126.6 (Ar), 77.3, 74.3, 72.0, 67.5, 66.7 (C-1-C-5), 63.1 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{9}$ (477.46): C, 55.34, H, 5.70; N, 8.80. Found: C, 55.47; H, 5.83; N, 8.92.

General procedure II for the synthesis of $\boldsymbol{N}^{\boldsymbol{l}}$-arylidene- \boldsymbol{C}-(2,3,4,6-tetra- \boldsymbol{O}-benzoyl- $\boldsymbol{\beta}$-Dglucopyranosyl)formamidrazones (18-20)

C-(2,3,4,6-Tetra-O-benzoyl- β-D-glucopyranosyl)formamidrazone ${ }^{5}(\mathbf{1 4}, 1.0 \mathrm{~g}, 1.57 \mathrm{mmol})$ and the corresponding aromatic aldehyde ($\mathbf{1 5 - 1 7}, 1.1$ equiv.) was heated in dry $\mathrm{EtOH}(20 \mathrm{~mL})$ at reflux temperature, and the reaction was monitored by TLC $(\mathrm{EtOAc} /$ hexane $=1: 1)$. After total consumption of the starting formamidrazone the product was separated either by filtration or by column chromatography.
N^{1}-Benzylidene- C-(2,3,4,6-tetra- O-benzoyl- β-D-glucopyranosyl)formamidrazone (18) Prepared from formamidrazone $\mathbf{1 4}(1.2 \mathrm{~g}, 1.88 \mathrm{mmol})$ and benzaldehyde $(\mathbf{1 5}, 0.21 \mathrm{~mL}, 2.07$ mmol) according to General procedure II. Reaction time: 2 h . The product precipitated from the hot reaction mixture, was filtered, and used without further purification. Yield: 0.94 g (69\%), white solid. Mp: $161-162{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+3\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.07-7.86(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.68(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 7.52-7.27(16 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.05,5.79,5.74(3 \mathrm{x}$ $1 \mathrm{H}, 3$ pseudo $\mathrm{t}, J=9.2,9.2 \mathrm{~Hz}$ in each, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 5.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.70(1 \mathrm{H}, \mathrm{dd}, J$ $=11.9,<1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.54(1 \mathrm{H}, \mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.52(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-1)$, $4.28(1 \mathrm{H}, \mathrm{ddd}, J=9.2,5.3,<1 \mathrm{~Hz}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,165.7$, 165.3, $165.2(\mathrm{C}=\mathrm{O}), 156.6(\mathrm{C}=\mathrm{N}), 156.1(=\mathrm{CH}), 134.7-127.8(\mathrm{Ar}), 77.3,76.4,73.5,70.5,69.2$ (C-1 - C-5), 62.9 (C-6). MS-ESI (m/z): calcd for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{9}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 726.24$. Found: 726.7.

N^{1}-(4-Methoxybenzylidene)- C-(2,3,4,6-tetra- O-benzoyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-

formamidrazone (19) Prepared from formamidrazone $14(0.5 \mathrm{~g}, 0.78 \mathrm{mmol})$ and p anisaldehyde (16, $105 \mu \mathrm{~L}, 0.86 \mathrm{mmol})$ according to General procedure II. Reaction time: 4 h. Purified by column chromatography ($\mathrm{EtOAc} /$ hexane $=2: 3$) to give $0.45 \mathrm{~g}(76 \%)$ colourless syrup. $\mathrm{R}_{\mathrm{f}}: 0.55(\mathrm{EtOAc} /$ hexane $=2: 3) ;[\alpha]_{\mathrm{D}}=-10\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.06-7.85(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.62(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 7.59-7.27(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J$ $=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.02,5.76,5.70(3 \mathrm{x} \mathrm{1H}, 3$ pseudo $\mathrm{t}, J=9.9,9.2 \mathrm{~Hz}$ in each, H-2, H-3, H-4), $5.57\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right), 4.68(1 \mathrm{H}, \mathrm{dd}, J=11.9,2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.53(1 \mathrm{H}, \mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, \mathrm{H}-$ $6 \mathrm{~b}), 4.41(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-1), 4.26(1 \mathrm{H}, \mathrm{ddd}, J=9.9,5.3,2.6 \mathrm{~Hz}, \mathrm{H}-5), 3.81(3 \mathrm{H}, \mathrm{s}$, OMe); ${ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,165.7,165.3,165.2(\mathrm{C}=\mathrm{O}), 161.2,156.0(\mathrm{Ar}$, $\mathrm{C}=\mathrm{N}), 155.7(=\mathrm{CH}), 133.5-127.4,113.8(\mathrm{Ar}), 77.3,76.4,73.5,70.5,69.2$ (C-1-C-5), 62.9 (C6), 55.2 (OMe). MS-ESI (m/z): calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{10}[\mathrm{M}]^{+}: 755.25$. Found: 755.3.

N^{1}-(Pyren-1-ylmethylidene)-C-(2,3,4,6-tetra-O-benzoyl- β-d-glucopyranosyl)-

formamidrazone (20) Prepared from formamidrazone 14 ($1.0 \mathrm{~g}, 1.57 \mathrm{mmol}$) and pyrene-1carbaldehyde ($\mathbf{1 7}, 0.40 \mathrm{~g}, 1.73 \mathrm{mmol}$) according to General procedure II. Reaction time: 1 h . The product precipitated from the hot reaction mixture, was filtered, and used without further purification. Yield: $0.95 \mathrm{~g}(71 \%)$, yellow solid. $\mathrm{Mp}: 139-141^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+84\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.74(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 8.53(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 8.20-7.26$ $(28 \mathrm{H}, \mathrm{m}, \mathrm{Ar},=\mathrm{CH}), 6.09(1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.2,9.2 \mathrm{~Hz}, \mathrm{H}-2$ or $\mathrm{H}-3$ or $\mathrm{H}-4), 5.83-5.75(4 \mathrm{H}$, m, H-2 and/or H-3 and/or H-4, NH2 $), 4.74(1 \mathrm{H}, \mathrm{dd}, J=11.9,2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.58(1 \mathrm{H}, \mathrm{dd}, J=$ $11.9,5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 4.52(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-1), 4.32(1 \mathrm{H}, \mathrm{ddd}, J=9.2,5.3,2.6 \mathrm{~Hz}, \mathrm{H}-5)$; ${ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,165.7,165.4,165.2(\mathrm{C}=\mathrm{O}), 156.7(\mathrm{C}=\mathrm{N}), 154.1$ $(=\mathrm{CH}), 133.5-122.3$ (Ar), 77.2, 76.4, 73.5, 70.7, 69.3 (C-1 - C-5), 62.9 (C-6). MS-ESI (m/z): calcd for $\mathrm{C}_{52} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{9}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 850.27$. Found: 850.7.

General procedure III for the transformation of \boldsymbol{N}^{1}-arylidene- \boldsymbol{C}-(2,3,4,6-tetra- O -benzoyl- β-D-glucopyranosyl)formamidrazones (18-20) by PIDA

To a solution of the corresponding arylidene amidrazone (18-20, 0.10 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) PIDA (2 equiv.) was added and the reaction mixture was stirred at rt . After disappearance of the starting material monitored by TLC $(\mathrm{EtOAc} /$ hexane $=1: 1)$ the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, extracted with water $(10 \mathrm{~mL})$, satd aq NaHCO_{3} solution $(10 \mathrm{~mL})$, and then with water $(10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered the solvent was evaporated under reduced pressure. The resulting products were separated by column chromatography.

3-(4-Methoxyphenyl)-5-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)-1,2,4-triazole 22

From formamidrazone $\mathbf{1 9}$ according to General procedure III. Reaction time: 2 d . Purified by column chromatography $(E t O A c /$ hexane $=2: 3)$ to give cyanide $\mathbf{1}$ as the first then the title compound 22 as the second fraction.

Compound 1: Yield: $60 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data correspond to the reported spectra. ${ }^{1}$ Compound 22: Yield: $13 \mathrm{mg}(13 \%)$ colourless syrup. $\mathrm{R}_{\mathrm{f}}: 0.38$ (EtOAc/hexane $=1: 1$); $[\alpha]_{\mathrm{D}}=-$ 4 (c $\left.0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.95-7.20(22 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.84(2 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}, \mathrm{Ar}), 6.02,6.09,5.93(3 \mathrm{x} 1 \mathrm{H}, 3$ pseudo $\mathrm{t}, J=9.9,9.2 \mathrm{~Hz}$ in each, H-2, H-3, H-4), 5.24 $(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-1), 4.66(1 \mathrm{H}, \mathrm{dd}, J=12.6,2.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 4.57(1 \mathrm{H}, \mathrm{dd}, J=12.6,4.6 \mathrm{~Hz}$, H-6b), 4.42 ($1 \mathrm{H}, \mathrm{d}, J=9.2,4.6,2.6 \mathrm{~Hz}, \mathrm{H}-5$) 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$); MS-ESI (m/z): calcd for $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 754.23$. Found: 754.7.

General procedure IV for the synthesis of \boldsymbol{O}-peracylated \boldsymbol{N}-arenecarboximidoyl- \boldsymbol{C} - $(\boldsymbol{\beta}$-Dglycopyranosyl)carbohydrazonoyl bromides (24-29)

An alkylidene amidrazone (8-13, 0.28 mmol$)$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, then N bromosuccinimide ($0.05 \mathrm{~g}, 0.28 \mathrm{mmol}$) was added. The mixture was stirred at rt . When the reaction was complete (TLC, EtOAc/hexane = 1:2) the solvent was evaporated, and the residue was purified by column chromatography.
N-Aminocarboximidoyl- C-(2,3,4,6-tetra- O-benzoyl- β-D-glucopyranosyl)carbohydrazonoyl bromide (24) Prepared from $8(0.60 \mathrm{~g}, 0.90 \mathrm{mmol})$ and NBS ($0.18 \mathrm{~g}, 0.99$ mmol) according to General procedure IV. Purified by column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ methanol $\left.=12: 1\right)$ to yield the title compound 24 as a yellow amorphous solid $(0.20 \mathrm{~g}$, $30 \%) . R_{\mathrm{f}} 0.40\left(\mathrm{CHCl}_{3} /\right.$ methanol $\left.=12: 1\right) ;[\alpha]_{\mathrm{D}}=+21\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=10.45$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $9.35\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.04-7.23(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 6.70(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}$), 6.12, 5.98, 5.63 (3 pseudo t, $3 \mathrm{H}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$), 4.77 (d, $J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.66$ (dd, $J=1,12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.53$ (dd, $J=6.4,12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b})$, 4.32 (m, $1 \mathrm{H}, \mathrm{H}-5$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,165.9,165.7,165.1$ (CO), $155.4(\mathrm{C}=\mathrm{NH}), 147.3(\mathrm{C}(=\mathrm{N}) \mathrm{Br}), 133.6-128.2(\mathrm{Ar}), 76.5,74.0,73.0,69.2,68.6(\mathrm{C}-1-\mathrm{C}-5)$, 63.2 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Br}$ (743.56): C, 58.56, H, 4.20; N, 7.53. Found: C, 58.47; H, 4.09; N, 7.65.

N-Benzenecarboximidoyl- C-(2,3,4,6-tetra- O-benzoyl- β-D-glucopyranosyl)carbo-

hydrazonoyl bromide (25) Prepared from 9 ($0.40 \mathrm{~g}, 0.55 \mathrm{mmol}$) and NBS ($0.10 \mathrm{~g}, 0.55$ mmol) according to General procedure IV. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=1: 2)$ to yield the title compound 25 as a white amorphous solid $(0.33 \mathrm{~g}$, $74 \%) . R_{\mathrm{f}} 0.30(\mathrm{EtOAc} / \mathrm{hexane}=1: 2) ;[\alpha]_{\mathrm{D}}=+30\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=8.06-7.24(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}), 6.30($ brs, $1 \mathrm{H}, \mathrm{NH}), 6.24,5.99,5.73$ (3 pseudo t, J $=9.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 4.78(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.68(\mathrm{dd}, J=2.5,12.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-6a), 4.53 (dd, $J=5.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.32$ (ddd, $J=2.5,5.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,166.0,165.8,165.2(\mathrm{CO}), 161.5(\mathrm{C}=\mathrm{NH})$, 133.4-127.0 ($\mathrm{Ar}, \mathrm{C}(=\mathrm{N}) \mathrm{Br}), 82.3,76.5,74.3,70.4,69.6$ (C-1-C-5), 63.2 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Br}$ (804.64): C, 62.69, H, 4.26; N, 5.22. Found: C, 62.59; H, 4.15; N, 5.10 .

N-(Pyridine-2-carboximidoyl)- C-(2,3,4,6-tetra- O-benzoyl- β-D-glucopyranosyl)-
carbohydrazonoyl bromide (26) Prepared from $10(0.15 \mathrm{~g}, 0.21 \mathrm{mmol})$ and NBS (0.09 g , 0.41 mmol) according to General procedure IV. Purified by column chromatography $(\mathrm{EtOAc} /$ toluene $=1: 8)$ to yield the title compound 26 as a white amorphous solid $(0.11 \mathrm{~g}$, $64 \%) . R_{\mathrm{f}} 0.50(\mathrm{EtOAc} /$ toluene $=1: 8) ;[\alpha]_{\mathrm{D}}=+55\left(\mathrm{c} 0.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.52-7.25(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}), 6.96(1 \mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.60(1 \mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.30$, 6.00, 5.75 (3 pseudo t, $J=9.4,9.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$), 4.76 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.70(\mathrm{dd}, J=1.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.54(\mathrm{dd}, J=5.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.41-4.18(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{H}-5) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,165.9,165.8,165.1$ (CO), 158.8 $(\mathrm{C}=\mathrm{NH}), 149.1,148.2,136.7,133.4-122.3(\mathrm{Ar}, \mathrm{C}(=\mathrm{N}) \mathrm{Br}), 82.4,76.5,74.4,70.4,69.6$ (C-1-C5), 63.2 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Br}$ (805.63): C, 64.12, H, 4.13; N, 6.95 . Found: C, 64.24; H, 4.26; N, 6.83.

 hydrazonoyl bromide (27) Prepared from $11(0.30 \mathrm{~g}, 0.39 \mathrm{mmol})$ and NBS ($0.08 \mathrm{~g}, 0.39$ mmol) according to General procedure IV. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=1: 2)$ to yield the title compound 27 as a pale yellow amorphous solid (0.23 $\mathrm{g}, 70 \%) . R_{\mathrm{f}} 0.40(\mathrm{EtOAc} / \mathrm{hexane}=1: 2) ;[\alpha]_{\mathrm{D}}=+17\left(\mathrm{c} 0.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=8.21-7.21(\mathrm{~m}, 28 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}$), 6.31 (pseudo $\mathrm{t}, J=9.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ or H-3 or H-4), 6.14 (brs, $1 \mathrm{H}, \mathrm{NH}$), $6.00,5.76$ (2 pseudo $\mathrm{t}, J=9.6,9.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ and/or H-3 and/or H-4), 4.77 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.69(\mathrm{dd}, J=2.4,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.54(\mathrm{dd}, J=5.2$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 4.29 (ddd, $J=2.4,5.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=166.0,165.9,165.8,165.1(\mathrm{CO}), 161.4(\mathrm{C}=\mathrm{NH}), 134.5-123.8(\mathrm{Ar}, \mathrm{C}(=\mathrm{N}) \mathrm{Br})$, 82.4, 76.3, 74.4, 70.4, 69.5 (C-1-C-5), 63.1 (C-6) ppm. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{46} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Br}^{+}(854.171)[\mathrm{M}+\mathrm{H}]^{+}$, Found: 854.168, 856.167.

N-Benzenecarboximidoyl- C-(2,3,4,6-tetra- O-acetyl- β-D-galactopyranosyl)carbohydrazonoyl bromide (29) Prepared from $13(0.35 \mathrm{~g}, 0.73 \mathrm{mmol})$ and NBS ($0.13 \mathrm{~g}, 0.73$ mmol) according to General procedure IV. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=1: 1)$ to yield the title compound 29 as a white amorphous solid $(0.27 \mathrm{~g}$, $66 \%) \cdot R_{\mathrm{f}} 0.40(\mathrm{EtOAc} /$ hexane $=1: 1) ;[\alpha]_{\mathrm{D}}=-8\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.56-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.93$ (very br s, NH_{2}), 5.86 (pseudo $\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.47(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.11(\mathrm{dd}, J=3.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 4.36 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.24 (dd, $J=6.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.15$ (dd, $J=6.5,11.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.07(\mathrm{pt}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.19,2.07,2.01\left(3 \mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=170.4,170.3,170.2,170.1(\mathrm{CO}), 161.5(\mathrm{C}=\mathrm{NH}), 132.7,131.4$, 130.9, 128.6, 127.0 (Ar), 82.5, 74.7, 72.1, 67.3 (C-1-C-5), 61.9 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O} 9 \mathrm{Br}$ (556.36): C, 47.49, H, 4.71; N, 7.55. Found: C, 47.39; H, 4.63; N, 7.63.

General procedure V for the synthesis of O-peracylated 5-(β-D-glycopyranosyl)-3-substituted-1,2,4-triazoles (21, 30-33)

A carbohydrazonoyl bromide ($\mathbf{2 4 - 2 9}, 0.14 \mathrm{mmol}$) was dissolved in glacial AcOH (3 mL), then $\mathrm{NH}_{4} \mathrm{OAc}(0.012 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added. The mixture was stirred and heated at $110^{\circ} \mathrm{C}$. When the reaction was complete ($\mathrm{TLC}, \mathrm{EtOAc} /$ toluene $=2: 7$) the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$. The organic layer was separated and washed with cold, saturated NaHCO_{3} solution $(8 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography.

General procedure VI for the synthesis of O-peracylated 5-(β-D-glycopyranosyl)-3-substituted-1,2,4-triazoles (21, 30)

A carbohydrazonoyl bromide ($\mathbf{2 4 - 2 6}, 0.10 \mathrm{mmol}$) was dissolved in anhydrous pyridine (6 $\mathrm{mL})$. The mixture was stirred and heated at $110^{\circ} \mathrm{C}$. The reaction was monitored by TLC $($ EtOAc/toluene $=1: 3)$. When the reaction was complete the solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

3-Phenyl-5-(2,3,4,6-tetra-O-benzoyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-1,2,4-triazole (21) Prepared from $25(0.04 \mathrm{~g}, 0.05 \mathrm{mmol})$ according to General procedure \mathbf{V}. Purified by column chromatography $(\mathrm{EtOAc} /$ toluene $=1: 3)$ to yield the title compound 21 as a white solid $(0.021$ g, 56\%).

Prepared from 25 ($0.1 \mathrm{~g}, 0.12 \mathrm{mmol})$ according to General procedure VI. Purified by column chromatography $(E t O A c /$ toluene $=1: 3)$ to yield the title compound 21 as a white solid ($0.05 \mathrm{~g}, 58 \%$).

Characterization data correspond to the lit. values. ${ }^{5}$ The original spectra are available in the supporting information of that publication at http://dx.doi.org/10.1016/j.tet.2013.09.099.

3-(Pyridin-2-yl)-5-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)-1,2,4-triazole (30):

 Prepared from $26(0.25 \mathrm{~g}, 0.31 \mathrm{mmol})$ according to General procedure V. Purified by column chromatography $(\mathrm{EtOAc} /$ toluene $=1: 3)$ to yield the title compound $\mathbf{3 0}$ as a white solid(0.07 g, 32\%).Prepared from $26(0.11 \mathrm{~g}, 0.10 \mathrm{mmol})$ according to General procedure VI. Purified by column chromatography (EtOAc-toluene 1:3) to yield the title compound $\mathbf{3 0}$ as a white solid ($0.05 \mathrm{~g}, 53 \%$).

Characterization data correspond to the lit. values. ${ }^{5}$ The original spectra are available in the supporting information of that publication at http://dx.doi.org/10.1016/j.tet.2013.09.099.

3-(Naphthalen-2-yl)-5-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)-1,2,4-triazole (31)

Prepared from $27(0.12 \mathrm{~g}, 0.14 \mathrm{mmol})$ according to General procedure V. Purified by column chromatography $(\mathrm{EtOAc} /$ toluene $=2: 7)$ to yield the title compound $\mathbf{3 1}$ as a white solid ($0.06 \mathrm{~g}, 55 \%$).

Characterization data correspond to the lit. values. ${ }^{5}$ The original spectra are available in the supporting information of that publication at http://dx.doi.org/10.1016/j.tet.2013.09.099.

3-Phenyl-5-(2,3,4-tri-O-benzoyl- $\boldsymbol{\beta}$-D-xylopyranosyl)-1,2,4-triazole (32) Prepared from 28 (crude product, $0.23 \mathrm{~g}, 0.35 \mathrm{mmol}$) according to General procedure V. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=2: 3)$ to yield the title compound $\mathbf{3 2}$ as a white solid $(0.07 \mathrm{~g}$, 32%). m.p. $173-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-48\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.60$ (s, $1 \mathrm{H}, \mathrm{NH}$-triazole), 8.08-7.76 (m, $8 \mathrm{H}, \mathrm{Ar}$), 7.50-7.20 (m, $12 \mathrm{H}, \mathrm{Ar}$), 6.15-5.97 (m, $2 \mathrm{H}, \mathrm{H}-$ 2 , H-3), 5.62-5.47 (m, 1 H, H-4), 5.06 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.52$ (dd, $J=5.4,11.3 \mathrm{~Hz}, 1$ H, H-5a), 3.76 (pseudo t, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
165.9, 165.5, 165.3 (CO), 158.2, 158.0 (C-3-, C-5-triazole), 133.4-126.5 (Ar), 74.5, 73.6, 71.2, 70.0 (C-1-C-4), 67.2 (C-5) ppm. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7}$ (589.59): C, 69.26; H, 4.62; N, 7.13. Found: C, 69.11; H, 4.51; N, 7.23.

3-Phenyl-5-(2,3,4,6-tetra-O-acetyl- $\boldsymbol{\beta}$-D-galactopyranosyl)-1,2,4-triazole (33) Prepared from $29(0.13 \mathrm{~g}, 0.23 \mathrm{mmol})$ according to General procedure \mathbf{V}. Purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=2: 3)$ to yield the title compound $\mathbf{3 3}$ as a colourless amorphous solid $(0.07 \mathrm{~g}, 64 \%) . R_{\mathrm{f}} 0.22(\mathrm{EtOAc} /$ hexane $=1: 1) ;[\alpha]_{\mathrm{D}}=+22\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.01-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.73$ (pseudo t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.54(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.25(\mathrm{dd}, J=3.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 4.81 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.17-4.13 (m, $3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$), 2.08, 2.01, 1.96 (3 s, 12 $\mathrm{H}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,170.3,170.1,170.0(\mathrm{CO}), 158.0,157.5$ (C-3-, C-5-triazole), 130.0, 128.7, 128.0, 126.4 (Ar), 74.9, 74.0, 71.9, 67.9, 67.4 (C-1-C-5), 61.5 (C-6) ppm. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{9}$ (475.45): C, 55.58 ; H, 5.30; N, 8.84. Found: C, 55.41; H, 5.19; N, 8.93.

General procedure VII for the synthesis of N^{l}-arylidene-benzamidrazones (35)

Ethylbenzimidate (34, 1.01 mmol) was dissolved in dry EtOH $(10 \mathrm{~mL})$, and the corresponding aryl hydrazone $(1.01 \mathrm{mmol})$ was added. The reaction mixture was stirred and heated at reflux temperature overnight. The reaction was monitored by TLC (EtOAc/hexane $=1: 3$). When the reaction was complete the solvent was evaporated under reduced pressure, and the residue was crystallized from ethanol-hexane mixture.

General procedure VIII for the synthesis of N^{1}-arylidene-arenecarboxamidrazones (35, 36)

An arenecarboxamidrazone ($\mathbf{5}^{5}$ or $\mathbf{6}^{6}, 1.1 \mathrm{mmol}$) was dissolved in dry EtOH (8 mL), and the corresponding aromatic aldehyde (1.21 mmol) was added. The reaction mixture was stirred and heated at reflux temperature. The reaction was monitored by TLC (EtOAc/hexane $=1: 2$). When the reaction was complete the solvent was evaporated under reduced pressure, and the residue was crystallized from ethanol-hexane mixture.
 $\mathrm{g}, 1.01 \mathrm{mmol})$ and 4-fluorobenzaldehyde hydrazone $(0.14 \mathrm{~g}, 1.01 \mathrm{mmol})$ according to General procedure VII to yield 35a as a white solid ($0.21 \mathrm{~g}, 86 \%$). Prepared from benzamidrazone $(5,0.30 \mathrm{~g}, 2.22 \mathrm{mmol})$ and 4-fluorobenzaldehyde (0.26 mL , $2.44 \mathrm{mmol})$ according to General procedure VIII to yield 35a as a white solid (0.50 g , 93\%). m.p. $158-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=8.46$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 8.18-7.80 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.68-7.20 (m, $5 \mathrm{H}, \mathrm{Ar}$), 7.10 (brs, $2 \mathrm{H}, 2 \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=163.4(\mathrm{~d}, J=246.4 \mathrm{~Hz}, \mathrm{Ar}), 159.3(\mathrm{C}=\mathrm{NH}), 152.4(\mathrm{CH}=\mathrm{N}), 134.3,132.7$, 130.7, $130.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.6,127.2,116.0(\mathrm{~d}, J=21.6 \mathrm{~Hz})(\mathrm{Ar}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{~F}$ (241.26): C, $69.70 ; \mathrm{H}, 5.01 ; \mathrm{N}, 17.42$. Found: C, $69.82 ; \mathrm{H}, 5.14 ; \mathrm{N}, 17.30$.
N^{I}-(3-Chlorobenzylidene)-benzamidrazone (35b): Prepared from benzamidrazone (5,0.30 $\mathrm{g}, 2.22 \mathrm{mmol}$) and 3-chlorobenzaldehyde $(0.28 \mathrm{~mL}, 2.44 \mathrm{mmol})$ according to General procedure VIII to yield 35b as a white solid ($0.46 \mathrm{~g}, 81 \%$). m.p. $136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.44$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 8.09 (s, $1 \mathrm{H}, \mathrm{Ar}$), 7.96 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.86-7.75 (m, $1 \mathrm{H}, \mathrm{Ar}), 7.54-7.36$ (m, $5 \mathrm{H}, \mathrm{Ar}), 7.21$ (brs, $2 \mathrm{H}, 2 \mathrm{NH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=159.3(\mathrm{C}=\mathrm{NH}), 151.4(\mathrm{CH}=\mathrm{N}), 137.9,133.7,133.5,130.3,130.2$, 129.1, 128.1, 126.8, 126.6, 126.5 (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Cl}$ (257.72): C, 65.25; H, 4.69; N, 16.30. Found: C, 65.12; H, 4.79; N, 16.19.
N^{I}-(4-Bromobenzylidene)-benzamidrazone (35c): Prepared from ethylbenzimidate (34, $0.15 \mathrm{~g}, 1.01 \mathrm{mmol})$ and 4-bromobenzaldehyde hydrazone ($0.20 \mathrm{~g}, 1.01 \mathrm{mmol}$) according to General procedure VII to yield $\mathbf{3 5 c}$ as a white solid ($0.12 \mathrm{~g}, 39 \%$). Prepared from benzamidrazone $(5,0.20 \mathrm{~g}, 1.48 \mathrm{mmol})$ and 4-bromobenzaldehyde $(0.30 \mathrm{~g}, 1.63$ mmol) according to General procedure VIII to yield $\mathbf{3 5 c}$ as a white $\operatorname{solid}(0.38 \mathrm{~g}, 85 \%)$. m.p. $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.43$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $7.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.54-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.14 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 159.0$ ($\mathrm{C}=\mathrm{NH}$), 151.8 $(\mathrm{CH}=\mathrm{N}), 134.9,133.7,131.4,130.3,129.5,128.1,126.7,122.8(\mathrm{Ar}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Br}$ (302.17): C, 55.65 ; H, 4.00; N, 13.91. Found: C, 55.55 ; H, 4.11; N, 13.98.
N^{1}-(4-Methylbenzylidene)-benzamidrazone (35d): Prepared from benzamidrazone (5, 0.30 g, 2.22 mmol) and 4-methylbenzaldehyde ($0.29 \mathrm{~mL}, 2.44 \mathrm{mmol}$) according to General procedure VIII to yield 35d as a white solid ($0.43 \mathrm{~g}, 82 \%$). m.p. $197-199{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.41$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.96(\mathrm{dd}, J=1.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.78(\mathrm{~d}, J=$
8.0 Hz, $2 \mathrm{H}, \mathrm{Ar}$), 7.49-7.40 (m, $3 \mathrm{H}, \mathrm{Ar}), 7.24$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.97$ (brs, $2 \mathrm{H}, 2 \mathrm{NH}$), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=158.4(\mathrm{C}=\mathrm{NH}), 153.1(\mathrm{CH}=\mathrm{N})$, 139.3, 133.8, 132.8, 130.1, 129.1, 128.0, 127.6, 126.6 (Ar), $20.98\left(\mathrm{CH}_{3}\right)$ ppm. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3}$ (237.3): C, 75.92; H, 6.37; N, 17.71. Found: C, $75.80 ; \mathrm{H}, 6.25 ; \mathrm{N}, 17.82$.
N^{l}-(4-Methylthiobenzylidene)-benzamidrazone (35e): Prepared from benzamidrazone (5, $0.15 \mathrm{~g}, 1.11 \mathrm{mmol})$ and 4-methylthiobenzaldehyde $(0.16 \mathrm{~mL}, 1.22 \mathrm{mmol})$ according to General procedure VIII to yield $\mathbf{3 5 e}$ as a white solid $(0.24 \mathrm{~g}, 80 \%)$. m.p. $189-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.39$ (s, 1 H, CH=N), 7.93 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.82$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.51-7.37$ (m, $3 \mathrm{H}, \mathrm{Ar}$), 7.27 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.02$ (brs, $2 \mathrm{H}, 2$ NH), $2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=158.4(\mathrm{C}=\mathrm{NH}), 152.6$ $(\mathrm{CH}=\mathrm{N}), 140.2,133.8,132.1,130.2,128.1,126.6,125.4(\mathrm{Ar}), 14.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$ (269.36): C, 66.88; H, 5.61; N, 15.60. Found: C, 66.81; H, 5.69; N, 15.68.
N^{I}-(4-Methoxybenzylidene)-benzamidrazone (35f): Prepared from ethylbenzimidate (34, $0.15 \mathrm{~g}, 1.01 \mathrm{mmol})$ and 4-methoxybenzaldehyde hydrazone ($0.15 \mathrm{~g}, 1.01 \mathrm{mmol}$) according to General procedure VII to yield $\mathbf{3 5 f}$ as a white solid ($0.12 \mathrm{~g}, 47 \%$).

Prepared from benzamidrazone $(5,0.30 \mathrm{~g}, 2.22 \mathrm{mmol})$ and 4-methoxybenzaldehyde $(0.30 \mathrm{~mL}$, 2.44 mmol) according to General procedure VIII to yield $\mathbf{3 5 f}$ as a white solid ($0.51 \mathrm{~g}, 90 \%$). m.p. $143-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 8.10-7.70 (m, 4 $\mathrm{H}, \mathrm{Ar}), 7.60-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.15-6.73(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, 2 \mathrm{NH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=160.5,158.0$ ($\mathrm{C}=\mathrm{NH}, \mathrm{C}-\mathrm{OMe}$), 152.8 (CH=N), 133.9, $130.0,129.2,128.2,128.0,126.5,114.0(\mathrm{Ar}), 55.2\left(\mathrm{CH}_{3}\right)$ ppm. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ (253.3): C, 71.13; H, 5.97; N, 16.59. Found: C, 71.01; H, 6.09; N, 16.47.
N^{I}-(4-Nitrobenzylidene)-benzamidrazone (35g): Prepared from ethylbenzimidate (34, 0.15 $\mathrm{g}, 1.01 \mathrm{mmol}$) and 4-nitrobenzaldehyde hydrazone ($0.17 \mathrm{~g}, 1.01 \mathrm{mmol}$) according to General procedure VII to yield $\mathbf{3 5 g}$ as an orange solid $(0.16 \mathrm{~g}, 59 \%)$.

Prepared from benzamidrazone $(5,0.15 \mathrm{~g}, 1.11 \mathrm{mmol})$ and 4-nitrobenzaldehyde $(0.18 \mathrm{~g}, 1.22$ mmol) according to General procedure VIII to yield $\mathbf{3 5} \mathrm{g}$ as an orange solid ($0.28 \mathrm{~g}, 94 \%$). m.p. $195-198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.56$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $8.26(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.18$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.55-7.42(\mathrm{~m}, 3 \mathrm{H}$, Ar), 7.38 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=160.7$ (C=NH), 151.2 $(\mathrm{CH}=\mathrm{N}), 148.0,142.6,134.0,131.1,128.9,128.7,127.4,124.2$ (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ (268.27): C, $62.68 ; \mathrm{H}, 4.51 ; \mathrm{N}, 20.88$. Found: C, $62.80 ; \mathrm{H}, 4.63 ; \mathrm{N}, 20.99$.
$N^{\boldsymbol{l}}$-(4-Cyanobenzylidene)-benzamidrazone (35h): Prepared from ethylbenzimidate (34, $0.15 \mathrm{~g}, 1.01 \mathrm{mmol})$ and 4-cyanobenzaldehyde hydrazone ($0.15 \mathrm{~g}, 1.01 \mathrm{mmol}$) according to General procedure VII to yield $\mathbf{3 5} \mathbf{h}$ as a white solid ($0.21 \mathrm{~g}, 84 \%$).

Prepared from benzamidrazone $(\mathbf{5}, 0.20 \mathrm{~g}, 1.48 \mathrm{mmol})$ and 4-cyanobenzaldehyde $(0.21 \mathrm{~g}, 1.63$ mmol) according to General procedure VIII to yield $\mathbf{3 5 h}$ as a white solid ($0.29 \mathrm{~g}, 78 \%$). m.p. $190-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.10(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.55-7.40(\mathrm{~m}, 3 \mathrm{H}$, Ar), 7.35 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=159.9(\mathrm{C}=\mathrm{NH}), 151.2$ $(\mathrm{CH}=\mathrm{N}), 140.1,133.4,132.4,130.6,128.2,126.9,118.9(\mathrm{Ar}), 111.2(\mathrm{CN}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$ (248.28): C, 72.56; H, 4.87; N, 22.57. Found: C, 72.49; H, 4.96; N, 22.65.
N^{1}-(4-Acetamidobenzylidene)-benzamidrazone (35i): Prepared from ethylbenzimidate (34, $0.15 \mathrm{~g}, 1.01 \mathrm{mmol})$ and 4-acetamidobenzaldehyde hydrazone ($0.18 \mathrm{~g}, 1.01 \mathrm{mmol}$) according to General procedure VII to yield $\mathbf{3 5 i}$ as a white solid ($0.21 \mathrm{~g}, 74 \%$).

Prepared from benzamidrazone $(5,0.15 \mathrm{~g}, 1.11 \mathrm{mmol})$ and 4-acetamidobenzaldehyde $(0.20 \mathrm{~g}$, 1.22 mmol) according to General procedure VIII to yield $\mathbf{3 5 i}$ as a white solid ($0.25 \mathrm{~g}, 82 \%$). m.p. 199-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=10.11$ (s, $1 \mathrm{H}, \mathrm{NH}$), $8.38(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}), 7.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar), 7.51-7.39 (m, $3 \mathrm{H}, \mathrm{Ar}$), 7.00 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=168.9(\mathrm{CO}), 158.8(\mathrm{C}=\mathrm{NH}), 153.3(\mathrm{CH}=\mathrm{N}), 141.1,134.4,130.8,130.6$, 128.8, 128.6, 127.1, 119.2 (Ar), $24.6\left(\mathrm{CH}_{3}\right)$ ppm. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ (280.32): C, 68.55; H, 5.75; N, 19.99. Found: C, 68.48; H, 5.69; N, 19.91.
N^{1}-(4-Hydroxybenzylidene)-benzamidrazone (35j): Prepared from benzamidrazone (5, $0.20 \mathrm{~g}, 1.48 \mathrm{mmol})$ and 4-hydroxybenzaldehyde ($0.20 \mathrm{~g}, 1.63 \mathrm{mmol}$) according to General procedure VIII to yield $\mathbf{3 5 j}(0.33 \mathrm{~g}, 93 \%)$ as a yellow solid. m.p. 179-182 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=9.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.72 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.51-7.35$ (m, $3 \mathrm{H}, \mathrm{Ar}$), 6.89 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$), 6.82 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=159.6$, 158.2 ($\mathrm{C}=\mathrm{NH}, \mathrm{C}-\mathrm{OH}$), 153.8 $(\mathrm{CH}=\mathrm{N}), 134.5,130.5,129.9,128.6,127.2,127.0,115.9(\mathrm{Ar}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (239.27): C, 70.28; H, 5.48; N, 17.56. Found: C, $70.40 ; \mathrm{H}, 5.56 ; \mathrm{N}, 17.49$.
N^{l}-[(Pyridin-4-yl)methylidene]-benzamidrazone (35k): Prepared from benzamidrazone (5, $0.10 \mathrm{~g}, 0.74 \mathrm{mmol})$ and 4-pyridinecarboxaldehyde ($0.077 \mathrm{~mL}, 0.81 \mathrm{mmol}$) according to General procedure VIII to yield 35k as a yellow solid ($0.13 \mathrm{~g}, 77 \%$). m.p. $169-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.62$ (s, $2 \mathrm{H}, \mathrm{Ar}$), 8.43 (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 7.97 (d, $J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.90-7.81$ (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.56-7.39 (m, $3 \mathrm{H}, \mathrm{Ar}$), 7.32 (brs, $2 \mathrm{H}, 2 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=160.6(\mathrm{C}=\mathrm{NH}), 151.2(\mathrm{CH}=\mathrm{N}), 150.4,143.1,134.0,131.1,128.7$,
127.4, 122.0 (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4}$ (224.26): C, 69.62; H, 5.39; N, 24.98. Found: C, 69.74; H, 5.28; N, 25.09.
N^{1}-(4-Fluorobenzylidene)-pyridine-2-carboxamidrazone (36a): Prepared from pyridinecarboximidic acid hydrazide ($\mathbf{6}, 0.13 \mathrm{~g}, 0.92 \mathrm{mmol}$) and 4-fluorobenzaldehyde (0.11 $\mathrm{mL}, 1.01 \mathrm{mmol}$) according to General procedure VIII to yield $\mathbf{3 6 a}$ as a white solid $(0.20 \mathrm{~g}$, 75%). m.p. $115-117{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.65$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), $8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.04-7.88(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.57-7.48(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.33-7.23 (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.11 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=$ $163.0(\mathrm{~d}, J=247.9 \mathrm{~Hz}, \mathrm{Ar}), 156.5(\mathrm{C}=\mathrm{NH}), 152.8(\mathrm{CH}=\mathrm{N}), 150.2,148.4,136.9,131.9,129.9$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}), 125.3,121.0,119.4,115.6,115.5(\mathrm{~d}, J=21.7 \mathrm{~Hz})(\mathrm{Ar}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{~F}$ (242.25): C, 64.45; H, 4.58; N, 23.13. Found: C, 64.38; H, 4.51; N, 23.23.
N^{I}-(3-Chlorobenzylidene)-pyridine-2-carboxamidrazone (36b): Prepared from pyridinecarboximidic acid hydrazide $(6,0.15 \mathrm{~g}, 1.10 \mathrm{mmol})$ and 3-chlorobenzaldehyde (0.14 $\mathrm{mL}, 1.21 \mathrm{mmol}$) according to General procedure VIII to yield 36b as a white solid (0.19 g , 61%). m.p. $70-72{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta=8.67$ (d, $\left.J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 8.48$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.97-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.87-$ 7.78 (m, $1 \mathrm{H}, \mathrm{Ar}$), 7.58-7.50 (m, $1 \mathrm{H}, \mathrm{Ar}$), 7.49-7.50 (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.38, 7.15 (2 brs, $2 \mathrm{H}, 2$ NH) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=157.0(\mathrm{C}=\mathrm{NH}), 152.4(\mathrm{CH}=\mathrm{N}), 150.1,148.5$, 137.6, 136.9, 133.5, 130.3, 129.3, 126.8, 126.7, 125.4, 121.1 (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{Cl}$ (258.71): C, 60.35; H, 4.29; N, 21.66. Found: C, 60.46; H, 4.38; N, 21.74.
N^{1}-(4-Bromobenzylidene)-pyridine-2-carboxamidrazone (36c): Prepared from pyridinecarboximidic acid hydrazide $(6,0.15 \mathrm{~g}, 1.10 \mathrm{mmol})$ and 4-bromobenzaldehyde (0.22
$\mathrm{g}, 1.21 \mathrm{mmol}$) according to General procedure VIII to yield 36c as a white solid (0.30 g , 85%). m.p. $145-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.66$ (bs, $1 \mathrm{H}, \mathrm{Ar}$), 8.47 (s, 1 H , $\mathrm{CH}=\mathrm{N}), 8.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.97-7.83(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.56-7.47 (m, $1 \mathrm{H}, \mathrm{Ar}$), 7.16 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=$ $156.7(\mathrm{C}=\mathrm{NH}), 152.8(\mathrm{CH}=\mathrm{N}), 150.1,148.4,136.9,134.6,131.4,129.6,125.3,123.0,121.0$ (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{Br}$ (303.16): C, 51.50 ; H, 3.66; N, 18.48. Found: C, 51.59; H, 3.72; N, 18.56.
N^{I}-(4-Methylbenzylidene)-pyridine-2-carboxamidrazone (36d): Prepared from pyridinecarboximidic acid hydrazide ($6,0.30 \mathrm{~g}, 2.22 \mathrm{mmol}$) and 4-methylbenzaldehyde (0.29 $\mathrm{mL}, 2.43 \mathrm{mmol}$) according to General procedure VIII to yield $\mathbf{3 6 d}$ as a white solid (0.39 g , 74\%). m.p. $119-121{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.66$ (bs, $1 \mathrm{H}, \mathrm{Ar}$), 8.47 (s, 1 H , $\mathrm{CH}=\mathrm{N}), 8.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.00-7.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.60-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.38-$ 7.19 (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.05 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=156.2(\mathrm{C}=\mathrm{NH}), 154.1(\mathrm{CH}=\mathrm{N}), 150.3,148.4,139.6,136.8,132.6,129.1$, 127.8, 125.3, 121.0 (Ar), $21.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4}$ (238.29): C, 70.57; H, 5.92; N, 23.51. Found: C, 70.65; H, 5.83; N, 23.59.
N^{1}-(4-(Methylthiobenzylidene)-pyridine-2-carboxamidrazone (36e): Prepared from pyridinecarboximidic acid hydrazide ($\mathbf{6}, 0.18 \mathrm{~g}, 1.32 \mathrm{mmol}$) and 4-methylthiobenzaldehyde ($0.19 \mathrm{~mL}, 1.46 \mathrm{mmol}$) according to General procedure VIII to yield $\mathbf{5 i}$ as a yellow solid $(0.29 \mathrm{~g}, 82 \%)$. m.p. $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.67$ (d, $J=4.0 \mathrm{~Hz}, 1$ H, Ar), $8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.87(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.06$ (brs, $2 \mathrm{H}, 2$ $\mathrm{NH}), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=156.25(\mathrm{C}=\mathrm{NH}), 153.7$
$(\mathrm{CH}=\mathrm{N}), 150.3,148.4,140.6,136.9,131.8,128.2,125.4,125.3,121.0(\mathrm{Ar}), 14.2\left(\mathrm{SCH}_{3}\right) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}$ (270.35): C, 62.20; H, 5.22; N, 20.72. Found: C, 62.28; H, 5.31; N, 20.83.
N^{1}-(4-Methoxybenzylidene)-pyridine-2-carboxamidrazone (36f): Prepared from pyridinecarboximidic acid hydrazide ($\mathbf{6}, 0.15 \mathrm{~g}, 1.10 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($0.15 \mathrm{~mL}, 1.21 \mathrm{mmol}$) and according to General procedure VIII to yield $\mathbf{3 6 f}$ as a white solid ($0.22 \mathrm{~g}, 79 \%$). m.p. $112-113^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=8.66$ (d, $J=4.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Ar}), 8.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.96-7.83(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.56-7.48$ (m, $1 \mathrm{H}, \mathrm{Ar}), 7.09-6.95(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, 2 \mathrm{NH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=160.5,155.7(\mathrm{C}-\mathrm{OMe}, \mathrm{C}=\mathrm{NH}), 153.6(\mathrm{CH}=\mathrm{N}), 150.1,148.2,136.6,129.2$, 127.7, 125.0, 120.6, $113.8(\mathrm{Ar}), 55.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (254.29): C, 66.13; H, 5.55; N, 22.03. Found: C, 66.21; H, 5.62; N, 22.13.
N^{1}-(4-Nitrobenzylidene)-pyridine-2-carboxamidrazone (36g): Prepared from pyridinecarboximidic acid hydrazide $(\mathbf{6}, 0.15 \mathrm{~g}, 1.10 \mathrm{mmol})$ and 4-nitrobenzaldehyde $(0.18 \mathrm{~g}$, 1.21 mmol) according to General procedure VIII to yield $\mathbf{3 6 g}$ as an orange solid $(0.26 \mathrm{~g}$, 87%). m.p. 218-220 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.67$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}$), $8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.32-8.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 8.01-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.50, 7.33 (2 brs, $2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=157.8$ ($\mathrm{C}=\mathrm{NH}$), $151.7(\mathrm{CH}=\mathrm{N}), 150.0,148.6,147.6,141.7,137.1,128.6,125.7,123.7,121.4$ (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$ (269.26): C, 57.99; H, 4.12; N, 26.01. Found: C, 58.09; H, 4.19; N, 26.11.
N^{1}-(4-Cyanobenzylidene)-pyridine-2-carboxamidrazone (36h): Prepared from pyridinecarboximidic acid, hydrazide $(6,0.23 \mathrm{~g}, 1.69 \mathrm{mmol})$ and 4-cyanobenzaldehyde (0.24 $\mathrm{g}, 1.86 \mathrm{mmol}$) according to General procedure VIII to yield $\mathbf{3 6 h}$ as a white solid (0.34 g , 81\%). m.p. 192-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.67$ (brs, $1 \mathrm{H}, \mathrm{Ar}$), 8.55 (s, 1 H , $\mathrm{CH}=\mathrm{N}), 8.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.98-7.75(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.60-7.50 (m, $1 \mathrm{H}, \mathrm{Ar}), 7.43,7.27$ ($2 \mathrm{brs}, 2 \mathrm{H}, 2 \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=157.5(\mathrm{C}=\mathrm{NH}), 152.2(\mathrm{CH}=\mathrm{N}), 150.0,148.5,139.8,137.0,132.3,128.2,125.5,121.3$, 118.8 (Ar), 111.5 (CN) ppm. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5}$ (249.27): C, 67.46; H, 4.45; N, 28.10. Found: C, 67.37; H, 4.52; N, 28.18.
N^{1}-(4-Acetamidobenzylidene)-pyridine-2-carboxamidrazone (36i): Prepared from pyridinecarboximidic acid hydrazide ($\mathbf{6}, 0.30 \mathrm{~g}, 2.21 \mathrm{mmol}$) and 4-acetamidobenzaldehyde $(0.40 \mathrm{~g}, 2.43 \mathrm{mmol})$ according to General procedure VIII to yield $\mathbf{3 6 i}$ as a white solid (0.62 g, 95\%). m.p. 193-195 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=10.12$ (s, $1 \mathrm{H}, \mathrm{NH}$), 8.65 (d, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.95-7.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.84 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.65$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.55-7.47$ (m, $1 \mathrm{H}, \mathrm{Ar}$), 7.01 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=168.4(\mathrm{CO}), 156.1$ $(\mathrm{C}=\mathrm{NH}), 153.7(\mathrm{CH}=\mathrm{N}), 150.3,148.4,140.8,136.8,130.0,128.4,125.2,120.9,118.6$ (Ar), $24.1\left(\mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ (281.31): C, $64.04 ; \mathrm{H}, 5.37$; N, 24.90. Found: C, 64.11; H, 5.31; N, 24.98.
N^{I}-[(Pyridin-4-yl)methylidene]-pyridine-2-carboxamidrazone (36j): Prepared from pyridinecarboximidic acid hydrazide ($\mathbf{6}, 0.10 \mathrm{~g}, 0.74 \mathrm{mmol}$) and 4-pyridinecarboxaldehyde $(0.077 \mathrm{~mL}, 0.81 \mathrm{mmol})$ according to General procedure VIII to yield $\mathbf{3 6 j}$ as a yellow solid
$(0.26 \mathrm{~g}, 81 \%)$. m.p. $152-155^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{7}$ m.p. $\left.151^{\circ} \mathrm{C}\right)$; NMR data correspond to the literature values. ${ }^{7}$
N^{1}-(4-Hydroxybenzylidene)-pyridine-2-carboxamidrazone (36k): Prepared from pyridinecarboximidic acid hydrazide ($\mathbf{6}, 0.18 \mathrm{~g}, 1.32 \mathrm{mmol}$) and 4-hydroxybenzaldehyde ($0.18 \mathrm{~g}, 1.46 \mathrm{mmol}$) according to General procedure VIII to yield 36k as a yellow solid ($0.27 \mathrm{~g}, 79 \%$). m.p. $195-19{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=9.92$ (s, $1 \mathrm{H}, \mathrm{OH}$), 8.64 (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.27-8.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.96-7.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.74 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.57-7.47$ (m, $1 \mathrm{H}, \mathrm{Ar}$), 6.88 (brs, $2 \mathrm{H}, 2 \mathrm{NH}$), 6.83 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=159.3,155.7$ (C=NH, C-OH), 154.3 $(\mathrm{CH}=\mathrm{N}), 150.4,148.4,136.8,129.6,126.4,125.1,120.8,115.4$ (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$ (240.26): C, 64.99; H, 5.03; N, 23.32. Found: C, 64.90; H, 5.11; N, 23.41.

General procedure IX for the synthesis of asymmetric 3,5-disubstituted-1,2,4-triazoles

 $(39,40)$An arylidene amidazone ($\mathbf{3 5}$ or $\mathbf{3 6}, 0.331 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and NBS $(0.059 \mathrm{~g}, 0.331 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature. When the reaction was complete (TLC, EtOAc/hexane $=1: 3$) the solvent was evaporated under reduced pressure.The crude product was dissolved in glacial acetic acid (8 mL), then ammonium acetate $(0.028 \mathrm{~g}, 0.364 \mathrm{mmol})$ was added. The reaction mixture was stirred and heated at $110{ }^{\circ} \mathrm{C}$ overnight. When the reaction was complete (TLC, EtOAc/toluene $=1: 3$) the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and washed with $\mathrm{EtOAc}(4 \times 15 \mathrm{~mL})$. The organic layer was separated, and washed with water $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography $(\mathrm{EtOAc} /$ hexane $=$ 1:2).

General procedure X for the synthesis of asymmetric 3,5-disubstituted-1,2,4-

 triazoles $(39,40)$An arylidene amidazone ($\mathbf{3 5}$ or $\mathbf{3 6}, 0.83 \mathrm{mmol}$) and ammonium acetate $(0.13 \mathrm{~g}, 0.1 .66 \mathrm{mmol}$) was dissolved in glacial AcOH (16 mL), then NBS ($0.148 \mathrm{~g}, 0.83 \mathrm{mmol}$) was added. The mixture was stirred and heated at $110^{\circ} \mathrm{C}$ overnight. When the reaction was complete (TLC, $\mathrm{EtOAc} /$ toluene $=1: 3)$ the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and washed with EtOAc (4 x 15 mL). The organic layer was separated, and washed with water $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography $(E t O A c /$ hexane $=1: 2)$.

3-(4-Fluorophenyl)-5-phenyl-1,2,4-triazole (39a) and 4-(4-fluorobenzylidene-amino)-3-(4-fluorophenyl)-5-phenyl-1,2,4-triazole (41a): Prepared from 35a ($0.10 \mathrm{~g}, 0.41 \mathrm{mmol}$) according to General procedure IX. Purified by column chromatography (EtOAc/hexane $=$ $1: 2)$ to yield 39 a as a white solid $(0.022 \mathrm{~g}, 22 \%)$ and 41 a as a white amorphous solid $(0.021 \mathrm{~g}$, $14 \%)$.

Prepared from $\mathbf{3 5 a}(0.20 \mathrm{~g}, 0.83 \mathrm{mmol})$ according to General procedure \mathbf{X} to yield 39a as a white solid ($0.135 \mathrm{~g}, 68 \%$).

39a: m.p. $220-222{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8}$ m.p. $208-211^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.55$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 8.35-7.92 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.70-7.06 (m, $5 \mathrm{H}, \mathrm{Ar})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=163.1$ (d, $J=246.7 \mathrm{~Hz}, \mathrm{Ar}), 160.6,155.0$ (C-3-, C-5-triazole), 129.7, 128.9, 128.2, 126.0, 115.8 (d, $J=21.6 \mathrm{~Hz}$) (Ar) ppm. ESI-MS (positive mode) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{~F}$ (239.25), Found: $239.1[\mathrm{M}]^{+}$.

41a: $\mathrm{R}_{\mathrm{f}:} 0.2$ (EtOAc/hexane $=1: 2$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=8.56(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}$), 8.21-7.91 (m, $3 \mathrm{H}, \mathrm{Ar}$), 7.90-7.71 (m, $3 \mathrm{H}, \mathrm{Ar}$), 7.58-7.31 (m, $4 \mathrm{H}, \mathrm{Ar}), 7.21-6.96$ (m, $3 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=165.4(\mathrm{~d}, J=251.4 \mathrm{~Hz}, \mathrm{Ar}), 165.0(\mathrm{~d}, J=$ $246.5 \mathrm{~Hz}, \mathrm{Ar}), 159.7$ (C-3-, C-5-triazol), 154.7 (CH=N), 133.7-126.4 (Ar), 115.7 (d, $J=21.9$ Hz) (Ar) ppm. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~F}_{2}$ (360.36), Found: 360.1 $[\mathrm{M}]^{+}$.

3-(3-Chlorophenyl)-5-phenyl-1,2,4-triazole (39b): Prepared from 35b ($0.10 \mathrm{~g}, 0.39 \mathrm{mmol}$) according to General procedure IX to yield 39b as a white solid (0.034 g, 34\%). Prepared from 35b $(0.20 \mathrm{~g}, 0.78 \mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{3 9 b}$ as a white solid (128 mg, 64\%). m.p. 219-220 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.58$ ($\mathrm{s}, 1$ H, NH), 8.13-7.90 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.54-7.35 (m, $5 \mathrm{H}, \mathrm{Ar})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-
d6): $\delta=160.1,155.4$ (C-3-, C-5-triazole), 133.6, 130.8, 129.8, 128.9, 126.0, 125.5, 124.4 (Ar) ppm. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Cl}$ (255.70), Found: 255.1 [M] ${ }^{+}$.

3-(4-Bromophenyl)-5-phenyl-1,2,4-triazole (39c): Prepared from 35c ($0.10 \mathrm{~g}, 0.33 \mathrm{mmol}$) according to General procedure IX to yield 39c as a white solid ($22 \mathrm{mg}, 22 \%$).

Prepared from $\mathbf{3 5 c}(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{3 9} \mathrm{c}$ as a white solid ($0.06 \mathrm{~g}, 60 \%$). m.p. $255-257{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{9}$ m.p. $249-251^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.25-7.98(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.81-7.68$ (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.57-7.48 (m, $3 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=161.8,156.0$ (C-3-, C-5-triazole), $132.9,130.9,130.0,129.0,127.1,123.7$ (Ar) ppm. ESI-MS (positive mode) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Br}$ (300.15), Found: $300.0[\mathrm{M}]^{+}$.

3-(4-Methylphenyl)-5-phenyl-1,2,4-triazole (39d) and 4-(4-methylbenzylidene-amino)-3-(4-methylphenyl)-5-phenyl-1,2,4-triazole (41d): Prepared from 35d ($0.10 \mathrm{~g}, 0.42 \mathrm{mmol}$) according to General procedure IX. Purified by column chromatography (EtOAc/hexane = 1:2) to yield 39d as a white solid ($17 \mathrm{mg}, 17 \%$) and $\mathbf{4 1 d}$ as a white amorphous solid (0.056 g , 38\%).

Prepared from $\mathbf{3 5 d}(0.05 \mathrm{~g}, 0.21 \mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{3 9 d}$ as a white solid ($25 \mathrm{mg}, 50 \%$).

39d: m.p. $178-181{ }^{\circ} \mathrm{C}$ (lit. ${ }^{10}$ m.p. $180-183{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.49(\mathrm{~s}, 1$ H, NH), 7.94 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.08 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=$ 162.0, 155.6 (C-3-, C-5-triazole), 140.4, 138.7, 131.9, 129.9, 129.3, 129.2, 126.5, 125.1 (Ar), $21.4\left(\mathrm{CH}_{3}\right)$ ppm. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3}$ (235.28), Found: 235.1 $[\mathrm{M}]^{+}$.

41d: $\mathrm{R}_{\mathrm{f}:} 0.2(\mathrm{EtOAc} /$ hexane $=1: 2)$; m.p. $175-178{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{11}$ m.p. $\left.178-179{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ MHz, DMSO-d6) $\delta(\mathrm{ppm}) 8.57$ (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 7.84 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.71-7.67 (m, 4 $\mathrm{H}, \mathrm{Ar}), 7.54-7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.38-7.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 2.36,2.32\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d6 $): \delta(\mathrm{ppm})=171.0(\mathrm{CH}=\mathrm{N}), 150.1,150.0(\mathrm{C}-3-, \mathrm{C}-5-$ triazole $), 144.0$, 139.4 (C-OMe), 129.8-123.5 (Ar), 21.2, $21.0\left(\mathrm{CH}_{3}\right)$. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4}$ (352.43), Found: 352.2 [M] ${ }^{+}$.

3-(4-Methylthiophenyl)-5-phenyl-1,2,4-triazole (39e): Prepared from 35e ($0.10 \mathrm{~g}, 0.37$ mmol) according to General procedure IX to yield 39e as a white solid ($0.03 \mathrm{~g}, 30 \%$). Prepared from $35 \mathbf{e}(0.10 \mathrm{~g}, 0.37 \mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{3 9 e}$ as a white solid ($0.06 \mathrm{~g}, 61 \%$). m.p. $173-175{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.42$ (s, 1 H, NH), 8.08 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.41 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=$ 158.3, 157.9 (C-3-, C-5-triazole), 140.2, 129.5, 128.8, 126.3, 125.9, 125.7 (Ar), $14.3\left(\mathrm{CH}_{3}\right)$ ppm. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}$ (267.35), Found: $267.1[\mathrm{M}]^{+}$.

3-(4-Methoxyphenyl)-5-phenyl-1,2,4-triazole (39f): Prepared from $\mathbf{3 5 f}$ ($0.10 \mathrm{~g}, 0.40 \mathrm{mmol}$) according to General procedure \mathbf{X} to yield $\mathbf{3 9 f}$ as a white $\operatorname{solid}(0.06 \mathrm{~g}, 60 \%)$. m.p. 158-160 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{12}$ m.p. $154-156{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.00-7.91$ (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.94 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.38-7.22$ (m, $3 \mathrm{H}, \mathrm{Ar}), 6.79$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.0,160.0,158.8(\mathrm{C}-\mathrm{OMe}$, C-3-, C-5-triazole), 129.7, 129.0, 128.7, 128.0, 126.5, 120.8, $114.1(\mathrm{Ar})$, $55.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (251.28), Found: 251.1 [M] ${ }^{+}$.

3-(4-Nitrophenyl)-5-phenyl-1,2,4-triazole (39g): Prepared from $\mathbf{3 5 g}$ ($0.15 \mathrm{~g}, 0.56 \mathrm{mmol}$) according to General procedure \mathbf{X} to yield $\mathbf{3 9 g}$ as a white solid ($0.05 \mathrm{~g}, 34 \%$). m.p. 226-228 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{13}$ m.p. 231-234 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.75$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 8.40$8.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 8.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.61-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=158.4,157.0$ (C-3-, C-5-triazole), 147.6, 136.2, 130.2, 129.0, 127.6, 126.8, 126.1, 124.1 (Ar) ppm.

3-(4-Cyanophenyl)-5-phenyl-1,2,4-triazole (39h): Prepared from 35h ($0.20 \mathrm{~g}, 0.81 \mathrm{mmol}$) according to General procedure \mathbf{X} to yield $\mathbf{3 9 h}$ as a white solid ($0.070 \mathrm{~g}, 35 \%$). m.p. 237$239{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=14.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar), 8.14-7.86 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.64-7.40 (m, $3 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): δ $=160.1,155.5$ (C-3-, C-5-triazole), 135.4, 132.8, 130.4, 129.0, 126.4, 126.1, 118.6 (Ar), 111.3 (CN) ppm. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4}$ (246.27): C, 73.16; H, 4.09; N, 22.75. Found: C, 73.25; H, 4.22; N, 22.86.

3-(4-Acetamidophenyl)-5-phenyl-1,2,4-triazole (39i): Prepared from $\mathbf{3 5 i}$ ($0.10 \mathrm{~g}, 0.34$ $\mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{3 9 i}$ as a white solid $(0.056 \mathrm{~g}, 56 \%)$. m.p. 264-266 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=10.33$ (s, $1 \mathrm{H}, \mathrm{NH}$), 8.25-7.99 (m, $2 \mathrm{H}, \mathrm{Ar}$), $8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.64-7.10(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, \mathrm{NH}), 2.09$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=168.7$ (CO), 156.8, 156.1 (C-3-, C-5-triazole), 141.4, 130.3, 129.0, 127.4, 127.2, 126.4, 121.2, $119.0(\mathrm{Ar}), 24.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (278.31): C, 69.05; H, 5.07; N, 20.13. Found: C, 69.15 ; H, 5.14; N, 20.22.

3-(4-Pyridyl)-5-phenyl-1,2,4-triazole (39j): Prepared from 35j ($0.20 \mathrm{~g}, 0.89 \mathrm{mmol}$) according to General procedure \mathbf{X} to yield $\mathbf{3 9 j}$ as a white solid ($0.08 \mathrm{~g}, 40 \%$). m.p. 242-244 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{~m} . \mathrm{p} .244{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 8.81-8.63 (m, $2 \mathrm{H}, \mathrm{Ar}), 8.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.00(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60-7.48(\mathrm{~m}, 3 \mathrm{H}$, Ar) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 160.0,156.1$ (C-3-, C-5-triazole), 150.8, 138.7, 130.9, 129.5, 126.7, 120.6 (Ar) ppm. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$ (222.25), Found: $222.1[\mathrm{M}]^{+}$.

3-(4-Fluorophenyl)-5-(2-pyridyl)-1,2,4-triazole (40a): Prepared from 36a (0.12 g, 0.50 $\mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{4 0 a}$ as a white solid ($0.07 \mathrm{~g}, 59 \%$). m.p. 239-241 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14}$ m.p. 241-243 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 8.72 (s, $1 \mathrm{H}, \mathrm{Ar}$), 8.34-7.87 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.68-7.20 (m, $3 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=162.7$ (d, $J=245.9 \mathrm{~Hz}, \mathrm{Ar}), 160.6,154.8$ (C-3-, C-5-triazole), 149.5, 146.3, $137.6,128.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 127.2,124.9,121.3,115.7(\mathrm{~d}, J=21.7 \mathrm{~Hz}, \mathrm{Ar}) \mathrm{ppm}$.

3-(3-Chlorophenyl)-5-(2-pyridyl)-1,2,4-triazole (40b): Prepared from 36b (0.13 g, 0.50 mmol) according to General procedure \mathbf{X} to yield $\mathbf{4 0 b}$ as a white solid ($0.058 \mathrm{~g}, 45 \%$). m.p. 214-216 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=14.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.26-$ 7.95 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.62-7.46 (m, $3 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=160.3$, 154.8 (C-3-, C-5-triazole), 149.5, 145.9, 137.8, 133.5, 133.1, 130.7, 128.8, 125.3, 125.2, 124.3, 121.4 (Ar) ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{Cl}$ (256.69): C, 60.83 ; $\mathrm{H}, 3.53 ; \mathrm{N}, 21.83$. Found: C, 60.91; H, 3.63; N, 21.91.

3-(4-Bromophenyl)-5-(2-pyridyl)-1,2,4-triazole (40c): Prepared from 36c ($0.20 \mathrm{~g}, 0.66$ $\mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{4 0 c}$ as a white solid ($0.08 \mathrm{~g}, 40 \%$). m.p.

279-281 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{15}$ m.p. 230-231 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=14.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 8.72 (s, $1 \mathrm{H}, \mathrm{Ar}$), 8.23-7.95 (m, $4 \mathrm{H}, \mathrm{Ar})$, 7.75-7.62 (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.61-7.47 (m, $1 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=160.7$, 154.7 (C-3-, C-5-triazole), 149.5, 146.0, 137.8, 131.7, 130.3, 127.7, 125.1, 122.3, 121.3 (Ar) ppm.

3-(4-Methylphenyl)-5-(2-pyridyl)-1,2,4-triazole (40d): Prepared from 36d (0.20 g, 0.84 mmol) according to General procedure \mathbf{X} to yield $\mathbf{4 0 d}$ as a white solid ($0.115 \mathrm{~g}, 50 \%$). m.p. 202-205 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14}$ m.p. 203-204 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{Ar}), 8.07-7.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.60-7.45(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.40-7.21 (m, $2 \mathrm{H}, \mathrm{Ar}$), $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=$ 161.7, 154.4 (C-3, C-5-triazole), 149.5, 146.2, 138.4, 137.8, 129.3, 128.4, 125.8, 125.0, 121.3 (Ar), $22.0\left(\mathrm{CH}_{3}\right)$.

3-(4-Methanesulfinylphenyl)-5-(2-pyridyl)-1,2,4-triazole (40e): Prepared from 36e (0.10 g , 0.37 mmol) according to General procedure \mathbf{X} to yield $\mathbf{4 0 e}$ as a white $\operatorname{solid}(0.056 \mathrm{~g}, 53 \%)$. m.p. $171-173{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta=14.98$ (s, $1 \mathrm{H}, \mathrm{NH}$), 8.73 (s, $1 \mathrm{H}, \mathrm{Ar}$), $8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.07-7.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.81(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 160.8,154.8$ (C-3-, C-5-triazole), 149.5, 146.9, 145.9, 137.8, 133.2, 126.4, 125.2, 124.1, $121.4(\mathrm{Ar}), 43.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI-MS (positive mode) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{OS}^{+}$(285.34), Found: $285.2[\mathrm{M}+\mathrm{H}]^{+}$.

3-(4-Methoxyphenyl)-5-(2-pyridyl)-1,2,4-triazole (40f): Prepared from $\mathbf{3 6 f}$ ($0.15 \mathrm{~g}, 0.59$ $\mathrm{mmol})$ according to General procedure \mathbf{X} to yield $\mathbf{4 0 f}$ as a white solid $(0.086 \mathrm{~g}, 58 \%)$. m.p. $188-191{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14}$ m.p. $183-185^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=14.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$,
8.71 (brs, $1 \mathrm{H}, \mathrm{Ar}$), 8.22-7.90 (m, $4 \mathrm{H}, \mathrm{Ar}$), 7.61-7.41 (m, $1 \mathrm{H}, \mathrm{Ar)}, \mathrm{7.17-6.95} \mathrm{(m} 2 \mathrm{H},$,Ar), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.4,160.1,154.3(\mathrm{C}-\mathrm{OMe}, \mathrm{C}-3-$, C-5-triazole), 149.4, 146.2, 137.5, 127.3, 124.7, 123.7, 121.3, $114.1(\mathrm{Ar}), 55.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$.

3-(4-Cyanophenyl)-5-(2-pyridyl)-1,2,4-triazole (40h): Prepared from 36h (0.15 g, 0.60 mmol) according to General procedure \mathbf{X} to yield $\mathbf{4 0 h}$ as a white solid ($0.060 \mathrm{~g}, 40 \%$). m.p. 240-243 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=14.93$ (s, $1 \mathrm{H}, \mathrm{NH}$), 8.73 (s, $1 \mathrm{H}, \mathrm{Ar}$), 8.227.95 (m, $4 \mathrm{H}, \mathrm{Ar}), 7.77-7.48$ (m, $3 \mathrm{H}, \mathrm{Ar}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=160.7$, 154.7 (C-3-, C-5-triazole), 149.5, 145.9, 137.8, 131.7, 130.3, 127.8, 125.1, 122.3, 121.3 (Ar), 107.8 (CN) ppm. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{5}$ (247.25): C, 68.01 ; H, 3.67; N, 28.32. Found: C, 68.11; H, 3.76; N, 28.41.

3-(4-Acetamidophenyl)-5-(2-pyridyl)-1,2,4-triazole (40i): Prepared from $\mathbf{3 6 i}$ ($0.15 \mathrm{~g}, 0.53$ $\mathrm{mmol})$ according to $\mathbf{G e n e r a l}$ procedure \mathbf{X} to yield $\mathbf{4 0 i}$ as a white solid $(0.091 \mathrm{~g}, 61 \%)$. m.p. 290-292 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=14.74$ (s, $1 \mathrm{H}, \mathrm{NH}$), 10.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}$), 8.15 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.08-7.94$ (m, $3 \mathrm{H}, \mathrm{Ar}), 7.76-7.65$ (m, 2 H , Ar), 7.59-7.46 (m, $1 \mathrm{H}, \mathrm{Ar}$), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta=$ 168.4 (CO), 161.5, 154.4 (C-3-, C-5-triazole), 149.5, 146.2, 140.1, 137.8, 130.3, 126.4, 125.0, 121.3, 118.8 (Ar), $24.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ (279.30): C, $64.51 ; \mathrm{H}, 4.69$; N, 25.07. Found: C, 64.61; H, 4.76; N, 25.16.

3-(4-Pyridyl)-5-(2-pyridyl)-1,2,4-triazole (40j): Prepared from 36j ($0.15 \mathrm{~g}, 0.67 \mathrm{mmol}$) according to General procedure \mathbf{X} to yield $\mathbf{4 0} \mathbf{j}$ as a white solid ($0.045 \mathrm{~g}, 30 \%$). m.p. 268-270 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{16}$ m.p. 260-261 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=15.15$ (s, $1 \mathrm{H}, \mathrm{NH}$), 8.95$8.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 8.35-7.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.70-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz ,

DMSO-d6): $\delta=159.8,156.0$ (C-3-, C-5-triazole), 150.9, 150.1, 146.5, 138.4, 125.8, 122.0, 120.5 (Ar) ppm.

Analysis of reaction mixtures by LCMS

LC was performed on a Hypersil Gold ($50 \times 2.1 \mathrm{~mm}, 1.9 \mu \mathrm{~m}$, with precolumn filter, Thermo Electron Corp., San Jose, CA, USA) column, using an Accela HPLC system (Thermo Electron Corp., San Jose, CA, USA) eluted with a gradient of acetonitrile (A) and water (B) containing $0.1 \%(\mathrm{~V} / \mathrm{V})$ formic acid each. The gradient was from 10% of A (hold for 1 min) to 90% A over 12 min , hold for 6 min and return to initial conditions and hold for 2 min to equilibrate the column. The LC system was coupled with a Thermo LTQ XL mass spectrometer (Thermo Electron Corp., San Jose, CA, USA) operated in a full scan positive ion ESI mode (m / z range was $150-2000 \mathrm{Da})$. The ion injection time was set to 100 ms . ESI parameters were a spray voltage of 5 kV , a capillary temperature of $300^{\circ} \mathrm{C}$, a sheath gas flow of 20 units N_{2} and an auxiliary gas flow of 10 ubuts N_{2}. The tray temperature was set to $20^{\circ} \mathrm{C}$ and the column oven was set to $30^{\circ} \mathrm{C}$ to perform the optimal retention of the compounds in the reaction mixtures. The injection amount was $1 \mu \mathrm{~L}$ for each sample, the total concentration of all compounds in the samples was 50 ppm .

Table S1. Reactions of sugar derived N^{l}-alkylidene-amidrazones with PIDA ${ }^{\text {a }}$ - detailed product analysis

${ }^{\text {a Roman numbers denote compound types and are identical with those in mechanistic Scheme } 6 .}$
${ }^{\text {b }}$ The compound can be present in the mixture, but was not detected due to its low molecular weight.

Table S3. LC-MS analysis of reaction mixtures of sugar derived N^{l}-alkylidene-amidrazones with NBS ${ }^{\text {a }}$

Table S3. continued

Entry | Starting |
| :--- |
| compd |
| (type IV) | R

[^1]
References

1. L. Somsák and V. Nagy, Tetrahedron: Asymm., 2000, 11, 1719-1727. Corrigendum 2247.
2. L. Dong, L. Li, L. Ma and L. Zhang, Chin. Chem. Lett., 1992, 3, 597-600.
3. R. W. Myers and Y. C. Lee, Carbohydr. Res., 1984, 132, 61-85.
4. R. W. Myers and Y. C. Lee, Carbohydr. Res., 1986, 154, 145-163.
5. É. Bokor, A. Fekete, G. Varga, B. Szőcs, K. Czifrák, I. Komáromi and L. Somsák, Tetrahedron, 2013, 69, 10391-10404.
6. F. H. Case, J. Org. Chem., 1965, 30, 931-933.
7. D. Ranft, T. Seyfarth, K. J. Schaper, G. Lehwark-Yvetot, C. Bruhn and A. Buge, Arch. Pharm., 1999, 332, 427-430.
8. S. K. Samanta and J. Yli-Kauhaluoma, J. Comb. Chem., 2005, 7, 142-146.
9. M. J. Haddadin and E. H. G. Zadeh, Tetrahedron Lett., 2010, 51, 1654-1656.
10. A. Omodeisale, P. Consonni and G. Galliani, J. Med. Chem., 1983, 26, 1187-1192.
11. O. Bekircan, B. Kahveci and M. Kücük, Turk. J. Chem., 2006, 30, 29-40.
12. J. K. Wang, Y. X. Zong and G. R. Yue, Synlett, 2005, 1135-1136.
13. H. Weidinger and J. Kranz, Chem. Ber., 1963, 96, 1064-1070.
14. E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R. Fröhlich, L. De Cola, A. van Dijken, M. Büchel and H. Börner, Inorg. Chem., 2007, 46, 11082-11093.
15. M. Santus, Pol. J. Chem., 1980, 54, 1067-1072.
16. E. J. Browne, Aust. J. Chem., 1975, 28, 2543-2546.

[^0]: ${ }^{*}$ Corresponding authors - Tel: +3652512900 ext 22471 (MT) or 22348 (LS), Fax: +3652512744 , E-mail: toth.marietta@science.unideb.hu, somsak.laszlo@science.unideb.hu.

[^1]: ${ }^{\text {a }}$ Roman numbers denote compound types and are identical with those in mechanistic Scheme 8 .
 ${ }^{\mathrm{b}}$ The compound can be present in the mixture, but was not detected due to its low molecular weight.

