Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Shape Memory Copolymer based on 2-(Dimethylamino) Ethyl Methacrylate and Methyl Allyl Polyethenoxy Ether for Potential Biological Applications

Yangyang, Chen^{&a}, Funian Mo^{&a}, Shaojun Chen^{*a}, Yan Yang^a, Shiguo Chen^a, Haitao Zhuo^{*b}, Jianhong Liu^b;

^aShenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China. ^bCollege of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, 518060, China.

*Corresponding author: College of Materials Science and Engineering, Shenzhen University,

Shenzhen 518060, China. Tel and Fax: +86-755-26534562. E-mail: Shaojun Chen,

chensj@szu.edu.cn Shiguo Chen csg@szu.edu.cn

[&] Yangyang, Chen and Funian Mo are equal contributor to this work

Supporting Information

Test 1: Shape Memory Behavior Testing

The temperature-induced shape-memory behaviors were determined with cyclic thermomechanical analysis using a DMA800 instrument (tension clamp, controlled force mode). All samples were dried at 100°C *in vacuo* for 24h and cut in rectangular pieces of approximately 10mm×2.0mm×0.5mm.

The test setups

1) For dual-shape-memory cycles: (1) heating to 90 and equilibrated for 20 min; (2) uniaxially stretching to strain (ε_{load}) by ramping force from 0.001N to 1N at a rate of 0.25N/min; equilibration for 3 min; (3) fixing the strain (ε) by quickly cooling to ca. 20°C with cooling rate (q) of -10°C/min, followed by equilibration for 10min; (4) unloading external force 0N at a rate of 0.25N/min; (5) reheating to ca.90°C at a rate of 4°C/min and followed by equilibration for 40min; the recovery strain (ε_{rec}) is finally recorded.

2) For triple-shape-memory cycles: (1) heating to ca. 110°C and equilibrated for 20 min; (2) uniaxially stretching by ramping force from 0.001N to 1N at a rate of 0.25N/min; equilibration for 3 min; (3) fixing the strain by quickly cooling to 70°C with q=-10°C/min, followed by equilibration for 10min; (4) further fixing the strain by quickly cooling to 20°C with q=-10°C/min, followed by equilibration for 10min; (5) unloading external force 0N at a rate of 0.25N/min; (6) reheating to 70°C at a rate of 4°C/min and followed by equilibration for 40min; (7) reheating to ca. 110°C at a rate of 4°C/min and followed by equilibration for 40min.

3) For multi-staged strain recovery cycles: (1) heating to 110°C and equilibrated for 20 min; (2) uniaxially stretching by ramping force from 0.001N to 1N at a rate of 0.25N/min; equilibration for 3 min; (3) fixing the strain by quickly cooling to 20°C with q=-10°C/min, followed by equilibration for 10min; (4) unloading external force 0N at a rate of 0.25N/min; (7) reheating to 70°C at a rate of 4°C/min and followed by equilibration for 40min. (8) further reheating to 90°C at a rate of 4°C/min and followed by equilibration for 40min. (9) further reheating to 110°C at a rate of 4°C/min and followed by equilibration for 40min.

Calculations of shape memory behaviors

For dual-shape memory effect, the shape fixity (R_f) and shape recovery (R_r) were calculated using equations (1) and (2) below:

$$R_{f} = 100\% \times \varepsilon/\varepsilon_{load}$$
(1)

$$R_{\rm r} = 100\% \times (\epsilon - \epsilon_{\rm rec})/\epsilon \tag{2}$$

Where ε_{load} represents the maximum strain under load, ε is the fixed strain after cooling and load removal, and ε_{rec} is the strain after recovery.

For triple-shape memory effects, equations (1) and (2) are expanded to equations (3) and (4)

$$R_{f}(X \rightarrow Y) = 100\% \times (\varepsilon_{y} - \varepsilon_{x}) / (\varepsilon_{y, \text{load}} - \varepsilon_{x})$$
(3)

$$R_{r}(Y \rightarrow X) = 100\% \times (\varepsilon_{y} - \varepsilon_{x,rec}) / (\varepsilon_{y} - \varepsilon_{x})$$
(4)

Where X and Y denote two different shapes, respectively, $\varepsilon_{y,load}$ represents the maximum strain under load, ε_y and ε_x are fixed strains after cooling and load removal, and $\varepsilon_{x,rec}$ is the strain after recovery.

Figure S1. ATR-FTIR spectra of p(DMAEMA-co-TPEG) with different TPEG-content

Figure S2.AFM 3D-images of p(DMAEMA-co-TPEG) with different TPEG-content: (a-TPEG20; b-TPEG50; c-TPEG60; d-TPEG80)

Figure S3. Pictures showing the triple-shape memory and recovery (a-original shape; b-the first temporary shape fixed at 70°C; c-the second temporary fixed at 20°C; d-the first recovered shape recovered at 70°C; c-the second recovered at 110° C)

Samples	On the second	On the cooling				
	△H (J/g)	Tm (°C)	ΔH (J/g)		(°C)	
TPEG	183.7	55.45	172.7		29.43	
TPEG80	124.5	52.53	124.8		24.80	
TPEG60	97.30	52.86	84043		24.08	
TPEG50	59.04	52.56	37.12	9.63*	22.51	-18.12 ^{&}
TPEG40	59.63	54.40	34.75	6.28*	24.59	-18.12 ^{&}
TPEG30	45.37	49.43	16.23		-20.65	
TPEG20	36.61	49.38	20.11		-19.09	

Table S1. DSC results of p(DMAEMA-co-TPEG)

Temperature (&) and enthalpy (*) from the second crystallisation peak on cooling

Sample	n	logK	K	E(J/mol)	t(0.5)/min	$K = ln2/[t(0.5)]^n$	logK(t(0.5))
TPEG	1.53	-0.18	0.67	177.12	1.05	0.64	-0.19
TPEG80	1.72	-0.43	0.37	130.69	1.44	0.37	-0.43
TPEG60	2.33	-1.13	0.08	67.67	2.62	0.07	-1.13
TPEG50	2.33	-1.67	0.02	47.90	4.51	0.02	-1.68
TPEG40	1.98	-1.65	0.02	22.54	5.64	0.02	-1.64

Table S2. Parameters for isothermal crystallization kinetics at 30°C