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Test 1: Shape Memory Behavior Testing 

The temperature-induced shape-memory behaviors were determined with cyclic thermo-

mechanical analysis using a DMA800 instrument (tension clamp, controlled force mode). All 

samples were dried at 100°C in vacuo for 24h and cut in rectangular pieces of approximately 

10mm×2.0mm×0.5mm. 

The test setups

1) For dual-shape-memory cycles: (1) heating to 90 and equilibrated for 20 min; (2) 

uniaxially stretching to strain ( εload ) by ramping force from 0.001N to 1N at a rate of 

0.25N/min; equilibration for 3 min; (3) fixing the strain (ε) by quickly cooling to ca. 20°C 

with cooling rate (q) of -10°C/min, followed by equilibration for 10min; (4) unloading 

external force 0N at a rate of 0.25N/min; (5) reheating to ca.90°C at a rate of 4°C/min and 

followed by equilibration for 40min; the recovery strain ( εrec ) is finally recorded. 

2) For triple-shape-memory cycles: (1) heating to ca. 110°C and equilibrated for 20 min; (2) 

uniaxially stretching by ramping force from 0.001N to 1N at a rate of 0.25N/min; 

equilibration for 3 min; (3) fixing the strain by quickly cooling to 70°C with q=-10°C/min, 

followed by equilibration for 10min; (4) further fixing the strain by quickly cooling to 20°C 

with q=-10°C/min, followed by equilibration for 10min; (5) unloading external force 0N at a 

rate of 0.25N/min; (6) reheating to 70°C at a rate of 4°C/min and followed by equilibration 

for 40min; (7) reheating to ca. 110°C at a rate of 4°C/min and followed by equilibration for 

40min.

3) For multi-staged strain recovery cycles: (1) heating to 110°C and equilibrated for 20 min; 

(2) uniaxially stretching by ramping force from 0.001N to 1N at a rate of 0.25N/min; 

equilibration for 3 min; (3) fixing the strain by quickly cooling to 20°C with q=-10°C/min, 

followed by equilibration for 10min; (4) unloading external force 0N at a rate of 0.25N/min; 

(7) reheating to 70°C at a rate of 4°C/min and followed by equilibration for 40min. (8) further 

reheating to 90°C at a rate of 4°C/min and followed by equilibration for 40min. (9) further 

reheating to 110°C at a rate of 4°C/min and followed by equilibration for 40min.

Calculations of shape memory behaviors
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    For dual-shape memory effect, the shape fixity (Rf) and shape recovery (Rr) were 

calculated using equations (1) and (2) below:

                           Rf=100%×ε/εload                                  (1)

                           Rr=100%×(ε-εrec)/ ε                    (2)

Where εload represents the maximum strain under load, ε is the fixed strain after cooling and 

load removal, and εrec is the strain after recovery. 

     For triple-shape memory effects, equations (1) and (2) are expanded to equations (3) 

and (4)

            Rf(X→Y)=100%×(εy-εx )/(εy,load -εx)                     (3)

            Rr(Y→X)=100%×(εy-εx,rec )/(εy -εx)                   (4)

Where X and Y denote two different shapes, respectively, εy,load represents the maximum 

strain under load, εy and εx are fixed strains after cooling and load removal, and εx,rec is the 

strain after recovery. 
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Figure S1. ATR-FTIR spectra of p(DMAEMA-co-TPEG) with different TPEG-content
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Figure S2.AFM 3D-images of p(DMAEMA-co-TPEG) with different TPEG-content：(a-

TPEG20; b-TPEG50; c-TPEG60; d-TPEG80)
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Figure S3. Pictures showing the triple-shape memory and recovery (a-original shape; b-the first temporary 
shape fixed at 70℃; c-the second temporary fixed at 20℃; d-the first recovered shape recovered at 70℃; 
c-the second recovered shape recovered at 110℃)

Table S1. DSC results of p(DMAEMA-co-TPEG) 
On the second heating On the cooling Samples
△H ( J/g) Tm (℃) △H  (J/g) T (℃)

TPEG 183.7 55.45 172.7 29.43
TPEG80 124.5 52.53 124.8 24.80
TPEG60 97.30 52.86 84043 24.08
TPEG50 59.04 52.56 37.12 9.63* 22.51 -18.12&

TPEG40 59.63 54.40 34.75 6.28* 24.59 -18.12&

TPEG30 45.37 49.43 16.23 -20.65
TPEG20 36.61 49.38 20.11 -19.09

Temperature (&) and enthalpy (*) from the second crystallisation peak on cooling

Table S2. Parameters for isothermal crystallization kinetics at 30oC

Sample n logK K E(J/mol) t(0.5)/min K=ln2/[t(0.5)]n logK(t(0.5))

TPEG 1.53 -0.18 0.67 177.12 1.05 0.64 -0.19

TPEG80 1.72 -0.43 0.37 130.69 1.44 0.37 -0.43

TPEG60 2.33 -1.13 0.08 67.67 2.62 0.07 -1.13

TPEG50 2.33 -1.67 0.02 47.90 4.51 0.02 -1.68

TPEG40 1.98 -1.65 0.02 22.54 5.64 0.02 -1.64


