## **Supplementary Information**

Solvent Dependent Ligand Transformation in a Dinuclear Copper(II) Complex of a Compartmental Mannich-base Ligand: Synthesis, Characterization, Bio-relevant Catalytic Promiscuity and Magnetic study

Ishani Majumder,<sup>a</sup> Prateeti Chakraborty,<sup>a</sup> Sudhanshu Das,<sup>a</sup> Hulya Kara,<sup>b</sup> Shymal Kumar Chattopadhyay, <sup>c</sup> Ennio Zangrando,<sup>d</sup> and Debasis Das<sup>\*,a</sup>

<sup>a</sup>Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India
<sup>b</sup>Department of Physics, Faculty of Science and Art, Balikesir University, 10145 Balikesir, Turkey
<sup>c</sup>Department of Chemistry, IIEST Shibpur, Howrah, India
<sup>d</sup>Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy



Figure S1. FTIR spectrum of complex 1.



Figure S2. <sup>1</sup>H-NMR spectrum of ligand HL.



Figure S3. <sup>13</sup>C-NMR spectrum of ligand HL.



Figure S4. FTIR spectrum of ligand HL.



Figure S5. UV-VIS spectrum of ligand HL in DMSO.



Figure S6. UV-VIS spectrum of Complex 1 in DMSO.



Figure S7. UV-VIS spectrum of Complex 1 in different pH at DMSO-buffer medium.



**Figure S8.** Spectrophotometric titration of **1** (pH value: 3.45-4.5; pKa = 4.10) Conditions: Complex =  $10^{-3}$  [M]; [KCl] = 0.100 mol.L<sup>-1</sup>; [KOH] = 0.100 mol.L<sup>-1</sup>; in solution DMSO /water (75:25%v/v - 50 mL) at 25°C.

Table S1: pKa values of complex 1

| Complex | pKa[HL]           | pKa[M-OH <sub>2</sub> (1)] | pKa[M-OH <sub>2</sub> (2)] |
|---------|-------------------|----------------------------|----------------------------|
|         | pH range=3.45-4.5 | pH range=5.54-6.85         | pH range=7.15-9.23         |
| 1       | 4.1               | 6.1                        | 8.15                       |



Figure S9. ESI-MS spectrum of Complex 1 in DMSO-water medium.



Figure S10. PXRD pattern of complex 1.

•

**Table S2.**  $k_{cat}$  Value for Dinuclear Complex 1 for oxidation of 3,5 DTBC in DMSO.

| Complex | Wavelength<br>(nm) | V <sub>max</sub> (M s <sup>-1</sup> ) | <b>K</b> <sub>M</sub> ( <b>M</b> ) | $\mathbf{k}_{cat}$ ( $\mathbf{h}^{-1}$ ) |
|---------|--------------------|---------------------------------------|------------------------------------|------------------------------------------|
| 1       | 396                | 2.11×10 <sup>-6</sup>                 | 2.2×10 <sup>-3</sup>               | 0.762×10 <sup>2</sup>                    |



Figure S11. Change of d-d band of complex 1 during catecholase activity.



Figure S12. ESI-MS spectrum of complex –DTBC adduct after 1 hour of mixing.



Figure S13. Spectral scan to detect I<sup>3-.</sup>



**Figure S14.** Changes observed in UV–vis spectra of complex 1 up to 120 minutes (conc.  $1 \times 10^{-4}$  M) upon addition of 100-fold 3, 5-DTBC ( $1 \times 10^{-2}$  M) in 50% DMSO-water mixture.



**Figure S15.** Changes observed in UV–vis spectra of complex 1 up to 120 minutes (conc.  $1 \times 10^{-4}$  M) upon addition of 100-fold 3, 5-DTBC ( $1 \times 10^{-2}$  M) in 75% DMSO-water mixture.



Figure S16. Spectra of complex 1 in different percentage of water-DMSO medium.

 Table S3. Kinetics Parameters for the Phosphatase Activity of Complex 1

| Complex | Wavelength | V <sub>max</sub> (M s <sup>-1</sup> ) | <b>K</b> <sub>M</sub> ( <b>M</b> ) | $k_{cat}$ (s <sup>-1</sup> ) |
|---------|------------|---------------------------------------|------------------------------------|------------------------------|
|         | (nm)       |                                       |                                    |                              |
| 1       | 425        | 8.4904×10 <sup>-5</sup>               | 1.06×10 <sup>-3</sup>              | 1.69                         |



**Figure S17**. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate:catalyst = 20:1) in 75% DMSO-buffer medium at pH7.0 recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]= $1 \times 10^{-3}$ (M), [Complex] = $0.05 \times 10^{-3}$ (M). Arrow shows the change in absorbance with reaction time.



**Figure S18**. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1 (substrate : catalyst = 20:1) in 75% DMSO-buffer medium at pH **7.5** recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]= $1 \times 10^{-3}$ (M), [Complex] = $0.05 \times 10^{-3}$ (M). Arrow shows the change in absorbance with reaction time.



**Figure S19**. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1( substrate: catalyst = 20:1) in 75% DMSO-buffer medium at pH **8.0** recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]= $1 \times 10^{-3}$ (M), [Complex] = $0.05 \times 10^{-3}$ (M). Arrow shows the change in absorbance with reaction time.



**Figure S20**. Wavelength scan for the hydrolysis of 4-NPP in the absence and presence of complex 1( substrate: catalyst = 20:1) in 75% DMSO-buffer medium at pH **8.5** recorded at 25°C at an interval of 5 minutes for 90 min. [4-NPP]= $1 \times 10^{-3}$  (M), [Complex] = $0.05 \times 10^{-3}$  (M). Arrow shows the change in absorbance with reaction time.



**Figure S21**. Wavelength scan for the hydrolysis of 4-NPP in the absence of complex 1( substrate: catalyst = 20:1) in 75% DMSO-buffer medium at pH **9** recorded at 25°C at an interval of 10 minutes for 30 min. [4-NPP]= $1 \times 10^{-3}$  (M), [Complex] = $0.05 \times 10^{-3}$  (M). Arrow shows the change in absorbance with reaction time.



**Figure S22**. Wavelength scan for the hydrolysis of 4-NPP in the presence of Ligand HL(substrate:catalyst = 20:1) in 75% DMSO-buffer medium at pH **9** recorded at 25°C at an interval of 5 minutes for 30 mins. [4-NPP]= $1 \times 10^{-3}$ (M), [Ligand] = $0.05 \times 10^{-3}$ (M). Arrow shows negligible or no change in absorbance with reaction time.



**Figure S23**. Wavelength scan for the hydrolysis of 4-NPP in the presence of  $Cu(ClO_4)_2$  (substrate:catalyst = 20:1) in 75% DMSO-buffer medium at pH **9** recorded at 25°C at an interval of 5 minutes for 30 mins. [4-NPP]=1 × 10<sup>-3</sup>(M), [Ligand] =0.05 × 10<sup>-3</sup>(M). Arrow shows negligible or no change in absorbance with reaction time.



Figure S24. FTIR spectrum of Transformed ligand TL



Figure S25. <sup>1</sup>HNMR spectrum of Transformed ligand TL



**Figure S26**. ESI-MS spectrum of reaction mixture in acetonitrile after 30 minutes of the addition of the ligand and  $Cu(ClO_4)_{2}$ .



Figure S27. ESI-MS spectrum of deformed ligand TL after purification.



Figure S28. Cyclic voltammogram of complex 1 at the GC electrode in DMSO medium at 100 mV s<sup>-1</sup> scan rate.



Figure S29. Cyclic voltammogram of complex 1 at the GC electrode in Acetonitrile medium at  $100 \text{ mV s}^{-1}$  scan rate.



Figure S30. Cyclic voltammogram of complex 1 at the GC electrode in acetonitrile medium at  $100 \text{ mVs}^{-1}$  scan rate.



**Figure S31.** ORTEP drawing (ellipsoid probability 30%) of  $Cu(MeCN)_4(ClO_4)$  (All atoms are not labeled for sake of clarity).