Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Highly selective colorimetric and fluorescent detection for Hg²⁺ in aqueous solutions using dipeptide-based chemosensor

Jooyoung Park, Byunggyu In, and Keun-Hyeung Lee*

Bioorganic Chemistry Lab, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea. E-mail: leekh@inha.ac.kr; Fax: +82-32-8675604; Tel: +82-32-8607674

	Contents	Pages
Fig. S1-4	Characterization data of 1 (HPLC, ESI-HRMS. ¹ H and ¹³ C NMR)	S2-3
Fig. S5-8	Characterization data of 2 (HPLC, ESI-HRMS. ¹ H and ¹³ C NMR)	S4-5
Fig. S9	Ellman's test of 1 and 2	S6
Fig. S10	UV-VIS absorbance and fluorescence emission spectra of 2	S7
Fig. S11	Job's plot for 1 with Hg ^{II}	S 8
Fig. S12	ESI-HRMS spectrum of 1 with Hg ^{II}	S9
Fig. S13	UV-VIS absorbance of 2 for Hg ^{II}	S10
Fig. S14	UV-VIS absorbance and fluorescence emission titration curve of 1 for Hg ^{II}	S11
Fig. S15	Detection limit of 1	S12
Fig. S16	Anion effect of Hg ^{II}	S13
Fig. S17	Reversible test of 1	S14

Fig. S1. HPLC chromatograph of 1

Fig. S2. ESI-HRMS spectrum of 1

Fig. S3. ^{*1*}*H* NMR of **1** in 50% CD₃CN/D₂O

Fig. S4. ¹³C NMR of **1** in 50% CD₃CN/D₂O

Fig. S5. HPLC chromatograph of 2

Fig. S6. ESI-HRMS spectrum of 2

Fig. S8. ¹³C NMR of 2 in 50% CD₃CN/D₂O

Fig. S9. UV/VIS Absorbance of (a) 1 and (b) 2 (10 μ M) in the presence of DTNB (10 μ M) in 10 mM Tris buffer solution (pH 8.0) containing 1% CH₃CN.

Fig. S10. UV-VIS absorbance and fluorescence emission spectra of 2 (15 μ M) in aqueous buffered solution (10 mM HEPES, pH 7.4) containing 3% CH₃CN in the presence of various metal ions (60 μ M).

Fig. S11. A Job's plot for 1 (30 μ M) with Hg^{II} in 10mM HEPES buffer solution (pH 7.4) containing 5% CH₃CN by absorbance change.

Fig. S12. ESI-HRMS spectrum of 1 (100 μ M) with Hg^{II} (400 μ M) in 50% CH₃CN/H₂O containing 10 mM ammonium carbonate.

Fig. S13. UV-VIS absorbance titration curve of **2** (15 μ M) in the presence of Hg^{II}, (0, 5, ..., 60 μ M) in aqueous buffered solution (10 mM HEPES, pH 7.4) containing 3% CH₃CN.

Fig. S14. (a) UV-VIS absorbance and (b) fluorescence emission titration curve of **1** (15 μ M) in the presence of Hg^{II}, (0, 5, ..., 60 μ M) in aqueous buffered solution (10 mM HEPES, pH 7.4) containing 3% CH₃CN. (λ_{ex} = 469 nm, Slit 5/10 nm)

Fig. S15. Detection limit of 1 (15 μ M) with Hg^{II} ions in 10 mM HEPES buffer solution (pH 7.4) containing 3% CH₃CN.

Fig. S16. UV-VIS absorbance spectra of **1** (15 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% CH₃CN in presence of Hg^{II} (HgCl₂, Hg(OAc)₂, Hg(NO₃)₂ and Hg(ClO₄)₂, 60 μ M).

Fig. S17. UV-VIS absorbance spectra of **1** (15 μ M) with Hg^{II} (30 μ M) in the presence of EDTA (0, 15, 30, ..., 75 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% CH₃CN.

Fig. S18. UV-VIS absorbance and spectra of **1** (15 μ M) in the presence of Hg²⁺ (0, 5, ..., 60 μ M) in groundwater containing 3% CH₃CN and 10 mM HEPES (pH 7.4).

Fig. S19. Detection limit of 1 (15 μ M) with Hg^{II} ions in groundwater containing 3% CH₃CN and 10 mM HEPES (pH 7.4).

Fig. S20. Partial ¹H NMR spectra of (a) **1** (15 mM), (b) **1** in the presence of NH_4HCO_2 (1.5 equiv), and (c) **1** in the presence of NH_4HCO_2 (1.5 equiv) and $Hg(CIO_4)_2$ (6 equiv), in CD₃OD/DMSO-d6 (1:1, v/v). Ammonium format (NH_4HCO_2) was added for neutral pH and the peak (*) at 8.03 ppm corresponded to the proton of NH_4HCO_2 .

Fig. S21. UV-VIS absorbance spectra of NBDCD (30 μ M) in the presence of Hg²⁺ (0, 60, 80,, 360 uM) in DMSO/MeOH (1:1) containing 1mM ammonium formate