Supporting Information

Modified hierarchical TiO₂ NTs for enhanced gas phase

photocatalytic activity

Di Gu, Hongjun Wu*, Yanji Zhu and Baohui Wang

1. NMNs modified hierarchical TiO₂ NTs

The Ag nanoparticles were decorated on the TiO₂ NTs by a photocatalytic reduction method using AgNO₃. The TiO₂ NTs were soaked into the precursor solution $(0.5 \times 10^{-2} \text{ mol/L}, 1.0 \times 10^{-2} \text{ mol/L}, 1.5 \times 10^{-2} \text{ mol/L} \text{ AgNO}_3$ aqueous solution) for 24 h and then were irradiated in this solution with a 300 W high pressure mercury lamp for 30 min to reduce the absorbed Ag⁺ to Ag⁰ by photocatalysis at the expense of water oxidation. ¹ Variation of the peak height of 2360 cm⁻¹ corresponding to the normal vibration of CO₂ molecules derived from the FTIR transmittance spectra with the irradiation time was shown in fig. 1s.

The Au nanoparticles were decorated on the TiO₂ NTs by a photocatalytic reduction method using HAuCl₄. The TiO₂ NTs were soaked into the precursor solution $(1.21 \times 10^{-4} \text{ mol/L}, 2.43 \times 10^{-4} \text{ mol/L}, 3.64 \times 10^{-4} \text{ mol/L} \text{ HAuCl}_4$ aqueous solution) for 24 h and then were irradiated in this solution with a 300 W high pressure mercury lamp for 30 min to reduce the absorbed Au³⁺ to Au⁰ by photocatalysis at the expense of water oxidation. Variation of the peak height of 2360 cm⁻¹ corresponding to the normal vibration of CO₂ molecules derived from the FTIR transmittance spectra with the irradiation time was shown in fig. 2s.

The Pt nanoparticles were decorated on the TiO_2 NTs by a photocatalytic reduction method using Pt(AcAc)₂. The TiO₂ NTs were soaked into the precursor solution (0.5 ×10⁻³mol/L, 1.0×10⁻³ mol/L, 1.5×10⁻³ mol/L Pt(AcAc)₂ aqueous solution) for 24 h and then were irradiated in this solution with a 300 W high pressure mercury lamp for 30 min to reduce the absorbed Pt²⁺ to Pt⁰ by photocatalysis at the expense of water oxidation. Variation of the peak height of 2360 cm⁻¹ corresponding to the normal vibration of CO₂ molecules derived from the FTIR transmittance spectra with the irradiation time was shown in fig. 3s.

Fig. S1. Variation of the peak height of 2360 cm⁻¹ corresponding to the normal vibration of CO₂ molecules derived from the FTIR transmittance spectra with the irradiation time

Fig. S2. Variation of the peak height of 2360 cm⁻¹ corresponding to the normal vibration of CO_2 molecules derived from the FTIR transmittance spectra with the irradiation time.

Fig. S3. Variation of the peak height of 2360 cm⁻¹ corresponding to the normal vibration of CO_2 molecules derived from the FTIR transmittance spectra with the irradiation time.

Clearly, the Ag/TiO₂ NTs soaked in 1.0×10^{-2} mol/L AgNO₃ aqueous solution, the Au/TiO₂ NTs soaked in 2.43×10^{-4} mol/L HAuCl₄ aqueous solution, the Pt/TiO₂ NTs soaked in 1×10^{-3} mol/L Pt(AcAc)₂ aqueous solution showed the the biggest decomposition rate and highest gas phase PC activity within the range of concentration.

2. Experimental facility

Fig. S4. Experimental facility

3. Morphology of TiO₂ NTs

Figure S5. Morphology of TiO_2 NTs: (a) TiO_2 NTs in the one-step anodization; (b) hierarchical TiO_2 NTs in the two-step anodization;(c)(d)side view and the place of fracture of TiO_2 NTs; (e)EDS spectra of two-step TiO_2 NTs.

References

1 Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang. Nano Lett. 2013, 13, 14.