SUPPLEMENTARY INFORMATION

pH / temperature dependent selective removal of trace Cr(VI) from aqueous solution by imidazolium ionic liquid functionalized magnetic carbon nanotubes

Chunlai Wu^{a,b}, Jing Fan^{a*}, Juhui Jiang^a, Jianji Wang^c

- a. School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- b. School of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan, 471023, P.R. China
- c. School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reaction, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P.R. China

* Corresponding author: Tel. +86-373-3325719

E-mail: fanjing@htu.cn

C ₀ mg L ⁻¹	$q_e(exp) (mg g^{-1})$	Pseudo first order kinetics			Pseudo second order kinetics		
		k ₁	q _e , cal	R_1^2	k ₂	q _e , cal	R_2^2
1.00	1.250	0.002	0.590	0.879	0.015	1.317	0.998
2.00	2.500	0.004	1.724	0.969	0.004	2.708	0.997
3.00	3.480	0.002	2.021	0.938	0.002	3.737	0.995

Table S1 Kinetic parameters for the pseudo first order and pseudo second order model for Cr(VI) adsorption onto Fe $_3O_4$ /CNT-IL

			-					
	T(℃)	L	Freundlich model					
	1(0)	$K_L (L mg^{-1})$	$q_m(mg g^{-1})$	R ²	K _F	n	R ²	-
-	25	0.052	32.482	0.986	4.462	2.411	0.988	
	40	0.294	41.865	0.999	8.576	2.968	0.926	
	55	0.493	55.433	0.997	15.222	3.144	0.968	

Table S2 Langmuir and Freundlich parameters for Cr(VI) adsorption on $\label{eq:Fe3O4} Fe_3O_4/CNT\text{-}IL$

Figure S1. XRD patterns of (a) CNT-COOH and (b) Fe₃O₄/CNT-IL

Figure S2. The TEM images of Fe₃O₄/CNT-IL

Figure S3. The TGA curve of (a) CNT-COOH, (b) Fe₃O₄/CNT-COOH, (c) Fe₃O₄/CNT-IL and (d) ionic liquid under the protection of N₂

Fe₃O₄/CNT-IL

Figure S5. Effect of adsorbent dosage on Cr(VI) removal by Fe₃O₄/CNT-IL. $C_{[Cr(VI)]} = 2.0 \text{ mg L}^{-1}$, temperature =25 °C, contact time=12 h, pH=3.00 ± 0.05

Figure S6. Adsorption-desorption cycle of Fe₃O₄/CNT-IL for Cr(VI) Temperature =25 $^{\circ}$ C, contact time =4 h, desorption reagent: 8 % hydrazine hydrate