(Supporting Information)

Design, synthesis and biological evaluation of esculetin derivatives as anti-tumour agents

Ping Wang, Yang-Liu Xia, Guang-Bo Ge, Yang Yu, Jun-Xia Lu, Li-Wei Zou, Ling Yang*

Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian,116023, China. E-mail: ylingdicp@gmail.com.

Table of Contents

Description	Page
1. General Experimental	S2
2. ¹ H NMR and ¹³ C NMR spectra for compound 2	S2
3. ¹ H NMR spectra for compound 3	S3
4. ¹ H NMR and ¹³ C NMR spectra for compound 4	S4
5. ¹ H NMR sprectra for compound 5	S5
6. ¹ H NMR spectra for compound 6	S5
7. ¹ H NMR, ¹³ C NMR, HSQC. HMBC and HRMS spectra for compound 8	S6
8. ¹ H NMR, ¹³ C NMR, HSQC. HMBC and HRMS spectra for compound 9	S8
9. ¹ H NMR, ¹³ C NMR and HRMS spectra for compound 10	S10
10. ¹ H NMR, ¹³ C NMR and HRMS spectra for compound 11	S11
11. ¹ H NMR spectra for compound 12	S12
12. ¹ H NMR, ¹³ C NMR and HRMS spectra for compound 13	S13
13. ¹ H NMR, ¹³ C NMR and HRMS spectra for compound 14	S15
14. ¹ H NMR, ¹³ C NMR and HRMS spectra for compound 15	S16

1. General Experimental

The ¹H NMR and ¹³C NMR spectra were recorded in DMSO- d_6 using a Bruker ARX 400 spectrometer (400 MHz for ¹HNMR and 100 MHz for ¹³CNMR), and chemical shifts were expressed as ppm against TMS as an internal reference. High-resolution mass spectral (HRMS) analyses were measured with Hybrid Ion Trap-Orbitrap Mass Spectrometer (LTQ Orbitrap XL, Thermo). A UFLC system (Shimadzu, Kyoto, Japan) with tandem mass spectrometry (2010EV), using electrospray ionization (ESI) interface and a computer equipped with UFLC-MS solution software (version 3.41; Shimadzu). All reagents used in the synthesis were obtained commercially and used without further purification. The reactions were monitored by thin layer chromatography (TLC) on glass-packed precoated silica gel GF₂₅₄ plates and visualized in an iodine chamber or with a UV lamp. Flash column chromatography was performed using silica gel (200~300 mesh) purchased from Qingdao Haiyang Chemical Co. Ltd.

2. ¹H NMR and ¹³C NMR spectra for compound 2

¹³C NMR (100 MHz, DMSO-*d*₆)

3. ¹H NMR Spectra for compound 3

4. ¹H NMR and ¹³C NMR Spectra for compound 4

5. ¹H NMR Sprectra for compound 5

¹H NMR (400 MHz, DMSO-*d*₆)

6. ¹H NMR spectra for compound 6

¹H NMR (400 MHz, DMSO-*d*₆)

HMBC

10. ¹H NMR spectra for compound 11

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO-*d*₆)

10 in DMSO 13C

298.1049 297.0999 306.1331 314.0789 320.0867 328.1154 334.0813 340.0866 346.0863 356.0585 361.1005 297.0999 306.1331 314.0789 320.0867 328.1154 334.0813 340.0866 346.0863 356.0585 361.1005 298.1049 209.1041 200.1041 2<u>78.</u>1286 288.1225 280 285 290 262.1102 274.1078 260 265 270 275 246.0761 254.3206 245 250 255

