Supporting Information

Exploring the Mechanism of Isomerisation and

Water-Migration in the Water-Complexes of

Amino-acid L-Proline: Electrostatic Potential

and Vibrational Analysis

Gurpreet Kaur and Vikas*

Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh- 160014 INDIA.

*Corresponding author (Email: qlabspu@pu.ac.in, qlabspu@yahoo.com)

Table of contents

Figure S1. Isomerisation channels of conformers of L-proline obtained through GRRM. The geometries (with bond length in Å) are optimized at HF/6-31G level of theory and the values refers to *ZPE* corrected energy (in a.u.).

Figure S2. Same as Figure S1 but for Neutral/zwitterion isomerisation pathways of lowest lying conformers of L-proline.

Figure S3. Same as Figure S1, but for isomerisation of L-proline single-water complexes.

Figure S4. Transition states governing the automerisation routes between L-proline-water complexes at the BHandHLYP/6-311++G(d,p) level of the theory. The values refer to *ZPE* and *BSSE* corrected relative energies (in kcal/mol) with respect to Complex 4b obtained at the CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) level of the theory.

Table S1. Relative energies (in kcal/mol) of four lowest-lying conformers (Ps) and transition states (TSs), depicted in Figure 1, with respect to P1 at the *ZPE* corrected DFT/BHandHLYP/6-311++G(d,p) and CCSD(T)/6-311++G(d,p)//DFT/BHandHLYP/6-311++G(d,p) levels of the theory. The values compared in parentheses are from Ref. [11] computed at the B3LYP/6-311++G(d,p) level of the theory. The transition state represented as TS P*n*/P*m* connects the *n*th isomer of L-proline with *m*th isomer.

Table S2. Relative energies(in kcal/mol) of *L*-Proline–water complexes and interconnecting transition states with respect to Complex 4b depicted in Figs. 2–4 at ZPE and BSSE corrected (1) DFT/BHandHLYP/6-311++G(d,p), and (2) CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) levels of the theory. The stabilization energy(in kcal/mol) of these complexes are represented in bold, and the values compared in parenthesis are from Ref. 11 computed at the B3LYP/6-311++G(d,p) level of the theory without ZPE and BSSE corrections.

Table S3. Second order interaction energies, $E^{(2)}$ (in kcal/mol), representing the strength of H-bond formed between *L*-proline and single water molecules at BHandHLYP/6-311++G(d,p).

Table S4. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational modes in various conformers of L-Proline, with respect to those in the lowest lying conformer P1, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S5. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational modes in various complexes of L-proline with single-water molecule, with respect to lowest-lying Complex 2c among class I & II complexes, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S6. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational modes in various complexes of *L*-proline with single water molecule with respect to lowest-lying Complex 4b at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S7. Comparison of experimental frequencies and intensity from Ref. [51] with that of computed at BHandHLYP/6-311++G(d,p) with frequencies scaled with correction factor of 0.9335[Ref.47] for conformers P1 and P4. Values in parenthesis were computed at B3LYP/aug-cc-pVDZ level of the theory reported in previous work[Ref. 51].

Table S8. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational with respect to P1, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S9. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational with respect to P2, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S10. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational with respect to P3, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S11. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational with respect to P4, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Table S12. Standard Gibbs free energy change (ΔG) in kcal/mol, at various temperatures, for the dissociation pathways at BHandHLYP/6-311++G(d,p) level of the theory depicted in supporting information Figure S1.

Input and options applied in some calculations

Figure S1. Isomerisation channels of conformers of L-proline obtained through GRRM. The geometries (with bond length in Å) are optimized at HF/6-31G level of theory and the values refers to *ZPE* corrected energy (in a.u.).

lying conformers of L-proline.

Figure S3. Same as Figure S1, but for isomerisation of L-proline single-water complexes.

Figure S4. Transition states governing the automerisation routes between L-proline-water complexes at the BHandHLYP/6-311++G(d,p) level of the theory. The values refer to ZPE and BSSE corrected relative energies (in kcal/mol) with respect to Complex 4b obtained at the CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) level of the theory.

Table S1. Relative energies (in kcal/mol) of four lowest-lying conformers (Ps) and transition states (TSs), depicted in Figure 1, with respect to P1 at the *ZPE* corrected DFT/BHandHLYP/6-311++G(d,p) and CCSD(T)/6-311++G(d,p)//DFT/BHandHLYP/6-311++G(d,p) levels of the theory. The values compared in parentheses are from Ref. [11] computed at the B3LYP/6-311++G(d,p) level of the theory. The transition state represented as TS Pn/Pm connects the *n*th isomer of L-proline with *m*th isomer.

Spieces	ZPE	BHandHLYP/6-311++G(d,p)	CCSD(T)/6-311++G(d,p)//
			BHandHLYP/6-311++G(d,p)
P1	0.00	0.00(0.00)	0.00
P2	0.13	0.38(0.44)	0.50
P3	0.44	0.88(1.75)	1.51
P4	0.50	0.56(1.40)	1.38
TS P1/P2	0.13	1.69	1.69
TS P3/P4(1)	0.50	1.44	1.95
TS P3/P4(2)	0.56	1.82	2.26

Table S2. Relative energies(in kcal/mol) of L-Proline–water complexes and interconnecting transition states with respect to Complex 4b depicted in Figs. 2–4 at ZPE and BSSE corrected (1) DFT/BHandHLYP/6-311++G(d,p), and (2) CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) levels of the theory. The stabilization energy(in kcal/mol) of these complexes are represented in bold, and the values compared in parenthesis are from Ref. 11 computed at the B3LYP/6-311++G(d,p) level of the theory without ZPE and BSSE corrections.

Complexes	BHandHLYI	P/6-	BSSE(1)	ZPE	CCSD(T)/6-	BSSE(2)
	311 + G(d,p))			311++G(d,p)//	
					BHandHLYP/6-	
					311 + G(d,p)	
Complex 1a	5.90(5.13)	11.11	1.13	0.44	4.08	3.39
Complex 1b	2.89(2.26)	5.96	0.63	-0.31	0.82	1.57
Complex 1c	1.69(1.24)	7.72	0.50	0.06	0.25	1.95
Complex 1d	3.70(3.00)	5.27	0.69	-0.25	1.00	2.13
Complex 1e	3.64(2.91)	4.64	0.69	-0.88	1.07	1.76
Complex 2a	5.84(4.84)	10.92	1.44	0.56	4.71	4.08
Complex 2b	3.45(2.68)	5.96	0.63	-0.31	1.38	1.57
Complex 2c	1.63(3.66)	8.16	0.50	0.00	0.06	1.88
Complex 2d	4.33(3.33)	5.21	0.69	-0.31	1.32	2.20
Complex 2e	4.14(3.28)	4.64	0.69	-0.88	1.63	1.82
Complex 3a	3.64(4.47)	6.78	0.56	-0.56	2.51	2.13
Complex 3b	0.25(0.32)	10.67	0.88	0.00	0.06	2.70
Complex 3c	6.28(6.30)	3.64	0.50	-0.75	4.02	1.63
Complex 3d	2.82(2.46)	7.66	0.75	-0.19	1.00	2.26
Complex 3e	4.58	8.22	1.07	-0.25	2.70	2.95
Complex 4a	3.70(4.05)	6.46	0.69	-0.56	2.70	2.26
Complex 4b	0.00(0.00)	10.60	0.88	0.00	0.00	2.64
Complex 4c	5.33(5.76)	3.89	0.50	-1.00	3.64	1.57
Complex 4d	2.64(2.25)	7.59	0.82	-0.13	1 07	2.38
Complex Z1	12.24	13.49	0.75	0.50	10.92	2.64
Complex Z2	14.12	12.24	0.75	0.31	12.93	2.64
Complex $TS1a/1b$	6.09		0.82	-0.94	4 33	2.38
Complex $TS1b/1c$	2.82		0.44	-0.44	0.88	1 44
Complex $TS1c/1d$	3 77		0.75	-0.31	0.88	2.26
Complex $TS1a/1d^{[a]}$	6.09		0.82	-0.94	4 27	2.38
Complex $TS2b/2c^{[a]}$	3 26		0.44	-0.50	1 44	1 38
Complex $TS1a/2a$	6.53		1.00	0.00	5.21	3 14
Complex TS1b/2b	4.83		0.63	-0.38	2.76	1.63
Complex TS1d/2d	5 46		0.05	-0.38	2.70	2.13
Complex $TS1a/Z1$	18 76		1.95	-3.26	21.70	8.66
Complex $TS2a/72$	18.70		2 13	-2.95	21.27	8.97
Complex TS3a/3b	4 83		0.50	-0.88	3 39	1.57
Complex TS3b/3c	6.28		0.38	-1.13	4 46	1.13
Complex TS3d/3e ^[a]	46 75		1.13	-0.50	48 44	6.02
Complex TS3a/3e	5 77		0.63	-1 38	5 40	2.07
Complex TS4a/4b	4 52		0.05	-0.94	3 26	1.51
Complex TS4b/4c	5.96		0.38	-1 19	4 27	1.01
Complex TS4a/4d	5.70 67.65		1 10	-3.07	71.08	0.41
Complex TS3c//c	671		0.56	-1.00	/ 1.90	1.60
Complex TS3d/4d	1 33		1.26	-0.38	т.30 7 03	7.40
Complex TS/a/4a	4.33		0.56	-0.36	2.05	2.07
Complex TS4b/4b	5.45 0.21		0.50	-0.75	2.43 0.25	2.07
Complex 1540/40	U.JI	aaarah ar	U.09 tion in CDDM	-U.44 Eveent these a	U.23	2.07
[a] 15 obtained from the dot	ible ended 1S	search op	uon in GKKM.	Except these, a	in other 15s are obta	lined by saddle
point optimization.						

[b] Complex TS n/m specifies the transition state connects the *n*th complex of proline-single water molecule with *m*th complex.

			1120 Fromile	
Complex 1a	$n_{\rm N1(1)} \rightarrow \sigma^*_{\rm O3-H10}$	13.98	$n_{\rm O3(1)} \rightarrow \sigma^*_{\rm O1-H9}$	0.22
	$n_{\rm N1(1)} \rightarrow \sigma^*_{\rm O3-H11}$	0.14	$n_{O3(2)} \rightarrow \sigma^*_{O1-H9}$	17.69
Complex 1b	$n_{O2(1)} \rightarrow \sigma^*_{O3-H10}$	1.37		
-	$n_{O2(2)} \rightarrow \sigma^*_{O3-H10}$	4.12		
Complex 1c	$n_{O2(1)} \rightarrow \sigma^*_{O3-H10}$	2.19	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm C2-H3}$	0.28
	$n_{O2(2)} \rightarrow \sigma^*_{O3-H10}$	6.77		
Complex 1d	$n_{O1(1)} \rightarrow \sigma^*_{O3-H11}$	0.94	$n_{\rm O3(1)} \rightarrow \sigma^*_{\rm C3-H4}$	0.21
	$n_{O1(2)} \rightarrow \sigma^*_{O3-H11}$	2.37	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm C3-H4}$	1.11
	$n_{\rm O1(2)} \rightarrow \sigma^*_{\rm O3-H10}$	0.08		
Complex 1e			$n_{O3(2)} \rightarrow \sigma^*_{N1-H11}$	4.54
Complex 2a	$n_{\rm N1(1)} \rightarrow \sigma^*_{\rm O3-H10}$	14.46	$n_{O3(1)} \rightarrow \sigma^*_{O1-H9}$	0.20
	$n_{\rm N1(1)} \rightarrow \sigma^*_{\rm O3-H11}$	0.12	$n_{\rm O3(2)} \rightarrow \sigma^{*}_{\rm O1-H9}$	17.60
Complex 2b	$n_{O2(1)} \rightarrow \sigma^*_{O3-H11}$	1.36		
	$n_{O2(2)} \rightarrow \sigma^*_{O3-H11}$	4.08		
Complex 2c	$n_{O2(1)} \rightarrow \sigma^*_{O3-H11}$	2.36	$n_{\rm O3(1)} \rightarrow \sigma^*_{\rm C4-H7}$	0.09
	$n_{O2(2)} \rightarrow \sigma^*_{O3-H11}$	7.10	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm C4-H7}$	0.52
Complex 2d	$n_{\rm O1(1)} \rightarrow \sigma^*_{\rm O3-H11}$	0.42	$n_{\rm O3(1)} \rightarrow \sigma^*_{\rm C1-H1}$	0.40
	$n_{O1(2)} \rightarrow \sigma^*_{O3-H11}$	2.00	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm C4-H8}$	0.40
	$n_{\rm O1(2)} \rightarrow \sigma^*_{\rm O3-H10}$	0.11		
Complex 2e			$n_{O3(2)} \rightarrow \sigma^*_{N1-H11}$	4.67
Complex 3a	$n_{O1(1)} \rightarrow \sigma^*_{H10-O3}$	3.16	$n_{\rm O3(1)} \rightarrow \sigma^*_{\rm C1-H1}$	0.23
	$n_{\rm O1(2)} \rightarrow \sigma^*_{\rm H10-O3}$	4.10	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm N1-H8}$	1.64
Complex 3b	$n_{O1(1)} \rightarrow \sigma_{H10-O3}^{*}$	0.99	$n_{O3(1)} \rightarrow \sigma_{O2-H9}^*$	0.16
	$n_{O1(2)} \rightarrow \sigma_{H10-O3}^{*}$	3.61	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm O2-H9}$	14.89
	$n_{O1(2)} \rightarrow \sigma_{*O3-H11}$	0.11	*	
Complex 3c	$n_{O2(1)} \rightarrow \sigma_{H10-O3}^{*}$	3.01	$n_{O3(2)} \rightarrow \sigma_{C2-H3}^*$	0.22
Complex 3d	$n_{\rm N1(1)} \rightarrow \sigma_{\rm H8-O3}^*$	13.34	$n_{\rm O3(2)} \rightarrow \sigma^*_{\rm C2-H3}$	0.06
Complex 3e	$n_{\rm N1(1)} \rightarrow \sigma_{\rm H10-O3}^*$	9.91		
	$n_{O1(2)} \rightarrow \sigma_{H10-O3}^{*}$	0.09	*	0.00
Complex 4a	$n_{O1(1)} \rightarrow \sigma_{H10-O3}^{*}$	2.64	$n_{O3(1)} \rightarrow \sigma_{N1-H8}^{*}$	0.09
	$n_{O1(2)} \rightarrow \sigma_{H10-O3}^{*}$	2.84	$n_{O3(2)} \rightarrow \sigma_{N1-H8}^*$	3.20
Complex 4b	$n_{O1(1)} \rightarrow \sigma_{H10-O3}$	1.04	$n_{O3(1)} \rightarrow \sigma_{O2-H9}$	0.16
	$n_{O1(2)} \rightarrow \sigma_{H10-O3}$	3.81	$n_{O3(2)} \rightarrow \sigma_{O2-H9}$	14.55
Complete As	$n_{O1(2)} \rightarrow \sigma_{O3-H11}$	0.11	*	0.20
Complex 4c	$n_{O2(1)} \rightarrow \sigma_{O3-H11}$	3.42	$n_{O3(1)} \rightarrow \sigma_{C4-H7}$	0.30
			$n_{O3(2)} \rightarrow 6_{C4-H7}$	0.23
Complex 1d	*	12 21	$n_{O3(2)} \rightarrow 0$ C2-H3	0.07
Complex 4d	$n_{\rm N1(1)} \rightarrow 0_{\rm H8-O3}$	15.21	<i>n</i> > <i>m</i> *	0.00
Complex 21	$n_{O1(1)} \rightarrow 0_{H9-O3}$	1.05	$n_{O3(1)} \rightarrow 0_{N1-H8}$	0.09
	$n_{O1(2)} \rightarrow 0_{H9-O3}$	1.70	$n_{O3(2)} \rightarrow 0_{N1-H8}$	0.10
Compley 72	$n_{O1(3)} \rightarrow 0_{H9-O3}$	3.71	$n_{O3(1)} \rightarrow 0_{N1-H10}$	0.10
Complex L2	$n_{O1(1)} \rightarrow 0_{H9-O3}$	4.27	$\mu_{O3(1)} \rightarrow 0_{N1-H10}$	0.20
	$n_{O1(2)} \rightarrow 0$ H9-O3 $n_{O1(2)} \rightarrow \sigma^*$ values	7 1 2	$n_{O3(2)} \rightarrow O_{N1-H10}$	1.96
where <i>n</i> denotes the donati	$n_{O1(3)}$, O_{H9-O3}	ture to σ^* antibond σ	$n_{03(2)}$, 0 CI-H1 f non-lewis structure	1.70

Table S3. Second order interaction energies, $E^{(2)}$ (in kcal/mol), representing the strength of H-bond formed between *L-proline* and single water molecules at BHandHLYP/6-311++G(d,p).

Table S4. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational modes in various conformers of L-Proline, with respect to those in the lowest lying conformer P1, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

)	ne une er j.				
Modes	v (C=O)		v (C-O)		v(O-H)		v(N-H)	
Conformers	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
P1*	0.0		0.0	0.0	0.0		0.0	
	(0.0)	0.0	(0.0)		(0.0)	0.0	(0.0)	0.0
P2	1.63		-2.41	0.627	18.19		0.31	
	(13.66)	0.43	(46.33)		(-143.70)	29.97	(121.11)	-42.06
			. ,				· · · · ·	
Р3	-28.83		-263.12	-1.286	249.05		-18.20	
	(-76.76)	-1.95	(-158.65)		(-213.17)	48.68	(18.25)	-34.00
	· · · ·		· · · · · ·				× /	
P4	-26.98		-261.40	-1.112	248.52		-12.06	
	(-60.28)	-0.59	(-129.39)		(-214.94)	55.82	(11.76)	-18.99
	. ,		```		. ,		```	

*The IR frequency of vibrational modes, v(C=O), v(C-O), v(O-H) and v(N-H), in P1 is 1800.44, 1382.31, 3425.64, and 3451.55 cm⁻¹, respectively, with corresponding intensity of 413.12, 364.395, 318.673, 10.139 km/mol. The Raman activity of these modes, respectively, is 11.202, 2.445, 59.432, and 72.836 Å/a.m.u.

Table 5. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational modes in various complexes of L-proline with single-water molecule, with respect to lowest-lying Complex 2c among class I & II complexes, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

	L-Proline				water					
Modes	v (C=O)		v (C-O)		v(O-H)		v(N-H)		v(O-H)	
Complexes	IR shift F	Raman shift	IR shift R	aman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
Complex 1a	6.11		-84.84		51.87	1	-71.5	54	-106.3	3
	(-160.35)	-1.75	(-162.55)	2.50	(799.32)	-18.64	(35.6	3) 59.81	(765.65) -63.20
Complex 1b	12.20		-9.17		-13.53		3.4	45	83.0	9
	(-22.76)	-0.01	(-23.95)	-0.40	(42.79)	-0.80	(1.1	1) 14.29	(-63.85) 29.33
Complex 1c	-1.45		-0.99		-22.52		-0.1	17	6.82	2
	(-11.68)	-0.36	(-85.58)	-0.91	(21.16)	-3.08	(0.5	3) 15.89	(-11.19) 3.89
Complex 1d	32.33		-10.34		268.35		5.	11	-207.6	5
	(-54.82)	-1.59	(-13.21)	0.16	(-227.59)	26.08	(0.03	8) 18.50	(5.09) -51.53
Complex 1e	22.63		2.97		-36.97	,	-21.8	32	152.8	1
	(-36.76)	-0.58	(24.89)	0.04	(50.13)	0.00	(137.5	0) 45.92	(-334.55) -13.61
Complex 2a	6.54		-45.28		43.02		-46.7	77	-115.19	9
	(-62.71)	3.69	(-122.75)	-0.52	(618.62)	-26.38	(-1.1	7) 21.23	(584.94) -70.94
Complex 2b	13.99		-9.42		242.33		1.2	26	-149.32	2
	(-8.24)	0.56	(22.87)	0.17	(-27.47)	77.56	(0.3	7) -1.21	(-12.40) -42.04
Complex 2c*	0.00		0.00		0.00)	0.0	00	0.0)
	(0.00)	0.00	(0.00)	0.00	(0.00)	0.00	(0.0	0.00	(0.00) 0.00
Complex 2d	33.57		-8.34		-33.62		-5.0	05	114.8)
-	(-40.69)	-0.70	(25.80)	0.78	(7.06)	-8.25	(-2.8	9) 7.23	(-294.25) -23.74
Complex 2e	24.29		0.65		-10.49)	-21.8	31	152.54	4
-	(-24.60)	-0.27	(50.15)	0.98	(33.44)	7.92	(128.4	5) 24.95	(-334.35) -16.56
Complex Z1	-43.15						-603.7	72	-74.3	ĺ
-	(49.78)	-4.27					(415.0	7) -27.20	(37.09) -13.20
Complex Z2	-43.21						-583.	11	-85.9	5
-	(107.04)	-4.15					(428.6	6) -31.56	(116.07) -6.65

*The scaled IR frequency of vibrational modes v(C=O), v(C-O), v(O-H), v(N-H) and $v_{sym}(O-H, H_2O)$ in complex 2c is 1773.49, 1392.63, 3402.65, 3446.76 and 3560.86 cm⁻¹, respectively, with corresponding intensity of 467.955, 372.491, 332.24, 10.0712 and 365.915 km/mol. The Raman activity of these modes, respectively, is 11.961, 2.587, 59.191, 63.917 and 103.755 Å/a.m.u.

Table S6. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational modes in various complexes of *L*-proline with single water molecule with respect to lowest-lying Complex 4b at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

	L-Proline								water	
Modes	v (C=O)		v (C-O)		<i>v</i> (O-H)		v(N-H)		v _{sym} (O-H	[)
Complexes	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
Complex 3a	17.28		-85.20	6	272.4	1	17.3	4	14.5	3
	(74.18)	-1.28	(59.94) 1.55	(-573.45) -48.44	(30.81) 19.67	(45.73) 38.78
Complex 3b	-1.23		-100.54	4	-3.9)	-7.0	8	4.8	5
	(-15.84)	-1.46	(-134.35) -0.51	(14.13) -4.56	(6.83) -13.84	(-16.56) -0.21
Complex 3c	52.77	,	-117.8′	7	271.42	2	-26.7	3	78.9	6
	(29.75)	-0.13	(9.04) 0.09	(-515.85) -26.21	(-0.52) -14.89	(-183.90) 6.18
Complex 3d	37.60	1	-68.4	3	275.5	7	-32.0	6	-168.5	7
	(10.09)	-2.33	(-1.64)	0 0.43	(-558.85) -51.08	(114.87) 16.36	(360.68) 75.67
Complex 3e	54.68		-82.60	C	276.82	2	-13.5	7	-88.6	6
	(43.98)	-1.70	(11.20) -0.22	(-558.08) -55.61	(-12.85) 41.34	(255.62) 64.33
Complex 4a	19.74		-105.3	9	271.5	3	-12.9	5	26.6	0
	(65.60)	-0.04	(-1.83) -0.23	(-572.75) -44.76	(78.78) 48.80	(-7.46) 37.29
Complex 4b*	0.00	1	0.0	C	0.0)	0.0	0	0.0	0
	(0.00)	0.00	(0.00) 0.00	(0.00) 0.00	(0.00) 0.00	(0.00) 0.00
Complex 4c	52.01		-113.93	3	269.4)	4.0	2	75.7	9
	(37.85)	0.90	(87.12) -0.59	(-510.79) -12.11	(-3.70) 0.95	(-170.90) 2.89
Complex 4d	39.66	I	-115.72	2	274.54	1	-26.5	7	-172.4	9
	(28.93)	-0.82	(-42.91) -0.45	(-559.26) -45.96	(207.87) 48.31	(236.04	43.86

* The IR frequency of vibrational modes, v(C=O), v(C-O), v(O-H), v(N-H) and $v_{sym}(O-H, H_2O)$ in complex 4b is 1732.01, 1228.50, 3398.35, 3439.35 and 3601.15cm⁻¹, respectively, with corresponding intensity of 325.833, 205.575, 670.428, 23.104 and 261.831 km/mol. The Raman activity of these modes, respectively, is 11.276, 1.725, 70.181, 52.647 and 159.719 Å/a.m.u.

Table S7. Comparison of experimental frequencies and intensity from Ref. [51] with that of computed at BHandHLYP/6-311++G(d,p) with frequencies scaled with correction factor of 0.9335 [Ref. 47] for conformers P1 and P4. Values in parenthesis were computed at B3LYP/aug-cc-pVDZ level of the theory reported in previous work [Ref. 51].

Experim	nental			Cor	nputed			Expe	rimental			Comp	outed		
		P1			P4					P1			P4		
ν	I ^a obs	ν	Icalc		ν	Icalc		ν	Iobs	ν	Icalc		ν	Icalc	
3559	2.69				3674	103.74		1105	2.94	1102	35.12		1090	8.31	
2545					(3588)	(65.9)	ν (OH)	1072		(1105)	(30.5)	v (N1C2)	(1104)	(41.6)	ring bend
5545								1072	026	(1076)	(8.7)	ring for			
3393	0.54	3451	10.14					1021	020	1022	2.89	This tor	1029	3.08	
		(3413)	(65.9)	ν (NH)					0.12	(1045)	(2.0)	v (C2C4)	(1049)	(1.9)	v (C3C4)
3369	0.50				3440	21.90		976					963	7.31	
2025	5.00	2.42.6			(3396)	(16.3)	ν (NH)	0.5.5	0.04	0.2.6	5.02		(979)	(6.5)	ring bend
3025	5.20	3426	318.67	(OU)				955	0.12	936	5.83		941	2.25	
2984	2.10	2000	(342.0)	V(OH)	2987	29.66		950	0.15	(932)	(3.7)	ring bend	(938)	(1.4)	V(C3C4)
2704	2.10	(3008)	(9.5)	v (C4H)	(2997)	(30.2)	v (C4H)	,50	0.23	(950)	(11.6)	v (C2C4)			
		2980	29.99		2974	29.40		916		887	37.74				
		(2990)	(27.3)	ν (CH)	(2983)	(25.5)	v (C1H)		0.16	(914)	(2.0)	v (C3C4)			
2959	1.98	2956	33.51		2949	51.72		907					891	1.34	
2024	2.24	(2961)	(34.7)	ν (CH)	(2952)	(51.0)	v (C3H)	800	0.17	907	20.92		(904)	(1.0)	ring bend
2954	2.34	2949	24 71		2926	22.64		899		(922)	(76.2)		903	(0.20)	
		(2948)	(28.1)	v (CH)	(2935)	(17.7)	v (C4H)		0.97	()22)	(70.2)	OH tor	(922)	(0.2)	v (C1C3)
		2928	22.42	. (-)				896							
		(2935)	(14.4)	ν (CH)											
2916		2921	10.42		2922	14.14		884		861	22.97				
2005	2.20	(2930)	(13.3)	ν (CH)	(2931)	(19.6)	v (C3H)	076	0.65	(899)	(7.7)	@ (N1C2C5)	0.00	10.41	
2885	2.28				2902	26.22	v. (C2H)	876	0.42	854	21.61	ring hand	860	10.41	ring hand
2865	1 1 9	2885	57 38		(20)2)	(20.0)	V (C211)	853	0.42	(0/1)	(ד.ד)	Thig bend	(075)	(14.1)	Ting bend
2000	,	(2884)	(64.4)	ν (CH)				000	0.35						
2846					2851	68.37		844		820	18.57	02C5C2C4	837	6.14	N1C2C5O1
					(2847)	(74.9)	v (C1H)		0.31	(847)	(7.0)	tor	(849)	(7.8)	tor
1795		1001	412.12					822	0.06		0.00				
1789	7.22	1801	413.12	(C=0)				782	0.46	(703)	9.29				
1781		(1803)	(300.3)	V(C-0)				768	0.40	(793)	(3.8)	V(C2C3)	762	84 48	
1701								,00	0.60				(772)	(67.2)	NH tor
1766	6.03				1774	352.84		751							
					(1774)	(286.1)	v (C=O)		0.18						
1488	0.05	1480	2.57	(CII)	1480	1.99		726	0.95	719	20.21	NICOCTO			
		(1499)	(3.2)	@ (CH)	(1499)	3.02	@(CH)	713	0.85	(724)	(15.1)	NIC2C501	706	16.95	N1C2C501
		(1476)	(5.9)	o (CH)	(1476)	(2.4)	ወ (CH)	/15	0.58				(710)	(35.9)	tor
1463	0.29	1445	6.42	(011)	1442	5.68	(011)	675					(, = *)	· · /	
		(1464)	(5.2)	@ (CH)	(1461)	(4.1)	@ (NH)		0.53						
1451	0.52				1433	8.36		668							
1412	2.20		264.4	e (OII)	(1446)	(10.3)	@ (CH)	662							
1412	2.28	1383	504.4	and				600							
		(1425)	(213.2)	v (C-O)											
1405	1.40							628					625	56.77	01C5C2C4
	(* -		71.55						0.43				(632)	(61.6)	tor
1384	6.23	1404	/1.56					621		611	26.44	NICOCEON			
		(1407)	(151.6)	(NH)					0.45	(623)	(20.5)	tor			
1381			(101.0)					603	0.10	(020)			593	33.49	
									0.24				(605)	(20.7)	@(C2C5O1)
1364	0.83				1358	48.76		597		572	8.55				
1250	0.5.1	12.42	0.10		(1364)	(29.9)	@ (CH)		0.21	(582)	(5.9)	@ (C2C5O1)			
1350	0.54	1343	3.19	a (CIII)				584							
1330	0.10	(1349)	(0.3)	ω(СΠ)	1327	31.43		576					561	33.02	
	0.10				(1335)	(25.5)	@ (CH)		0.52				(579)	(19.3)	OH tor
1320	0.12	1312	2.66		1305	3.88		569							
		(1324)	(2.1)	@ (CH)	(1318)	(0.5)	@ (CH)		0.44						
1294		1287	0.55		1293	1.62		564		554	7.23		_		
1206	0.22	(1298)	(12.6)	@ (CH)	(1303)	(1.8)	@ (CH)	560		(570)	(6.9)	ring bend	0		
1200	0.52	(1294)	(11.9)	@(CH)	(12.85)	(57)	@ (OH)	500					0		
		(12)1)	(11.7)		1262	1.89		551							
					(1272)	(2.4)	@ (CH)		0.17				0		
1247	0.10	1236	10.91					546					536	53.08	
		(1249)	(8.1)	@ (CH)	1015	0.10			1.26				(549)	(44.3)	OH tor
		1218	1.79	1	1216	0.48	0	541	[[1				

		(1227)	(1.9)		(1230)	(0.4)	(N1C2C5)								
1210	0.25									459	3.03		407	15.34	
										(461)	(2.3)	@ (C2C5O2)	(411)	(15.1)	@ (C2C5O2)
1206		1197	11.28	ν						329	8.22	N1C2C3	284	10.16	
		(1205)	(17.5)	(C5O1)						(331)	(10.9)	bend	(286)	(10.5)	@ (N1C2C5)
		1173	3.54		1180	14.71				288	6.88		258	0.97	
		(1182)	(1.9)	@ (CH)	(1187)	(8.5)	@ (CH)			(288)	(6.2)	ring tor	(259)	(0.9)	ring tor
1150					1162	88.10				198	6.40		190	0.47	
					(1166)	(60.0)	v (N1C2)			(201)	(6.6)	ring tor	(194)	(0.5)	ring tor
					1147	10.7				105	0.69		62	1.54	01C5C2C4
					(1160)	(6.3)	@ (CH)			(109)	(0.6)	ring tor	(60)	(1.5)	tor
1142	2.21	1139	22.86	ν						50	2.74		43	1.34	
		(1148)	(27.5)	(C5O1)						(55)		O2C5C2C4	(42)	(1.2)	ring tor
1109	2.77				1121	235.0									
					(1120)	(221.7)	v (C5O2)								
^a I _{obs} is ex	$^{a}I_{obs}$ is experimental relative integral intensities* v= stretching, ω =bend, tor=torsion														

Table S8. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), for relevant vibrational with respect to P1 at DFT/BHandHLYP/6-311++G(d p) level of the theory

viorational v	vitil respec	t to 1 1, at DI	1/Dilanuli	L11/0-311	-O(u,p) ieve	i oi the theor	у.	
Modes	v (C=O)		v (C-O)		v(O-H)		<i>v</i> (N-H)	
Species	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
P1	0.0		0.0		0.0		0.0	
	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0
Complex 1a	-20.85		-35.46		28.89		-76.33	
	(-105.52)	-0.99	(-157.51)	1.39	(812.89)	-18.88	(35.56)	50.89
Complex 1b	-14.75		1.16		-36.51		-1.33	
	(32.08)	0.75	(-15.86)	-0.25	(56.36)	-1.04	(1.04)	5.37
Complex 1c	-28.40		9.34		-45.50		-4.96	
	(43.16)	0.39	(-77.48)	-0.76	(34.72)	-3.32	(0.46)	6.97
Complex 1d	5.38		-0.02		245.37		0.32	
	(0.02)	-0.83	(-5.11)	0.30	(-214.02)	25.84	(-0.03)	9.58
Complex 1e	-4.32		13.29		-59.95		-26.60	
	(18.07)	0.18	(32.99)	0.18	(63.69)	-0.24	(137.43)	37.00
P1 in water	-58.55		-7.36		-171.60		-8.41	
as solvent	(348.78)	13.69	(266.68)	4.48	(369.83)	65.63	(17.46)	95.45

Table S9. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), with respect to conformer P2, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

	_,			(,				
Modes	v (C=O)		v (C-O)		v(O-H)		v(N-H)	
Species	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
P2	0.0		0.0		0.0		0.0	
	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0
Complex 2a	-22.04		-32.55		1.84		-51.87	
	(-21.53)	4.02	(-160.99)	-1.01	(775.88)	-56.59	(-122.35)	54.37
Complex 2b	-14.59		3.31		201.15		-3.84	
	(32.94)	0.88	(-15.36)	-0.30	(129.79)	47.35	(-120.81)	31.92
Complex 2c	-28.58		12.73		-41.18		-5.10	
-	(41.18)	0.33	(-38.23)	-0.49	(157.26)	-30.21	(-121.18)	33.14
Complex 2d	4.98		4.40		-74.80		-10.15	
-	(0.49)	-0.37	(-12.43)	0.29	(164.32)	-38.46	(-124.08)	40.36
Complex 2e	-4.29		13.39		-51.67		-26.90	
	(16.58)	0.05	(11.92)	0.49	(190.70)	-22.30	(7.27)	58.09
P2 in water	-59.29		-8.58		-158.21		-6.74	
as solvent	(341.33)	13.78	(250.38)	5.95	(466.84)	31.79	(-107.87)	107.77

	5, at DF 1/.	DHallunl I r	/0-311++0	(u,p) level of	the meory.			
Modes	v (C=O)		v (C-O)		v(O-H)		v(N-H)	
Species	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
P3	0.0		0.0		0.0		0.0	
	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0
Complex 3a	-22.33		24.05		-3.89		23.34	
	(63.64)	0.74	(59.77)	2.12	(-8.53)	3.17	(25.52)	33.48
Complex 3b	-40.84		8.77		-280.32		-1.07	
	(-26.37)	0.56	-134.52	0.06	579.05	47.05	(1.54)	-0.02
Complex 3c	13.16		-8.57		-4.92		-20.72	
	(19.22)	1.89	8.87	0.65	49.07	25.40	(-5.81)	-1.08
Complex 3d	-2.01		40.87		-0.77		-26.05	
	(-0.44)	-0.30	-1.81	1.00	6.07	0.53	(109.58)	30.18
Complex 3e	15.08		26.71		0.49		-7.57	
	(33.45)	0.32	11.02	0.34	6.84	-4.00	(-18.14)	55.16
P3 in water	-41.38		-17.69		-23.48		-34.75	
as solvent	(298.62)	13.51	6.11	4.41	66.41	43.75	(5.16)	58.13

Table S10. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), with respect to conformer P3, at DFT/BHandHLYP/6-311++G(d.p) level of the theory.

Table S11. Relative shifts in the scaled [Ref.47] vibrational (IR) frequency (in cm⁻¹), along with the corresponding intensity (in km/mol) depicted in parenthesis, and Raman activity (in Å/a.m.u.), with respect to conformer P4, at DFT/BHandHLYP/6-311++G(d,p) level of the theory.

Modes v (C=O) v (C-O) v (O-H) v (N-H)SpeciesIR shiftRaman shiftIR shiftRaman shiftIR shiftRaman shiftRaman shiftP40.00.00.00.00.00.00.0(0.0)0.00(0.0)0.0(0.0)0.00.0Complex 4a-21.712.19-4.22-13.09(38.59)0.62(-31.27)0.16(-6.05)-0.30(79.99)47.60Complex 4b-41.46107.59-275.80-0.14-120		.,			(,	· · · · · · · · · · · · · · · · · ·			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Modes	v (C=O)		v (C-O)		v(O-H)		v(N-H)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Species	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift	IR shift	Raman shift
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P4	0.0		0.0		0.0		0.0	
Complex 4a -21.71 2.19 -4.22 -13.09 (38.59) 0.62 (-31.27) 0.16 (-6.05) -0.30 (79.99)47.60Complex 4b -41.46 107.59 -275.80 -0.14 (-27 01) 0.66 (-29 43) 0.39 (566 69)44 46(1 21) $-1 20$		(0.0)	0.0	(0.0)	0.0	(0.0)	0.0	(0.0)	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Complex 4a	-21.71		2.19		-4.22		-13.09	
Complex 4b -41.46 107.59 -275.80 -0.14 $(-27 01)$ 0.66 (-29.43) 0.39 (566.69) 44.46 (1.21) -1.20		(38.59)	0.62	(-31.27)	0.16	(-6.05)	-0.30	(79.99)	47.60
$(-27\ 01)$ 0.66 $(-29\ 43)$ 0.39 $(566\ 69)$ 44.46 $(1\ 21)$ -1.20	Complex 4b	-41.46		107.59		-275.80		-0.14	
		(-27.01)	0.66	(-29.43)	0.39	(566.69)	44.46	(1.21)	-1.20
Complex 4c 10.55 -6.35 -6.40 3.88	Complex 4c	10.55		-6.35		-6.40		3.88	
(10.84) 1.57 (57.68) -0.20 (55.90) 32.36 (-2.49) -0.26	-	(10.84)	1.57	(57.68)	-0.20	(55.90)	32.36	(-2.49)	-0.26
Complex 4d -1.80 -8.13 -1.26 -26.71	Complex 4d	-1.80		-8.13		-1.26		-26.71	
(1.92) -0.16 (-72.34) -0.05 (7.43) -1.50 (209.07) 47.11		(1.92)	-0.16	(-72.34)	-0.05	(7.43)	-1.50	(209.07)	47.11
P4 in water -44.01 -11.70 -23.11 -9.17	P4 in water	-44.01		-11.70		-23.11		-9.17	
as solvent (294.02) 14.72 (97.08) 1.70 (62.70) 49.54 (7.49) 74.49	as solvent	(294.02)	14.72	(97.08)	1.70	(62.70)	49.54	(7.49)	74.49

Table S12. Standard Gibbs free energy change (ΔG) in kcal/mol, at various temperatures, for the dissociation pathways at BHandHLYP/6-311++G(d,p) level of the theory depicted in supporting information Figure S1.

Dissociation	Temperature (K)		
pathways	200	298.15	400
P4→DC4	87.98	86.47	84.59
P4→DC5	91.74	90.05	88.04
P4→DC6	38.97	37.40	35.71
P4→DC7	29.56	27.80	25.79
P4→DC8	17.95	15.94	13.62
P4→DC9	13.05	9.29	5.02
P4→DC10	44.43	43.49	42.55
P3→DC2	49.82	48.26	46.44

Input and options applied in some calculations

1. Input file for GRRM search around proline conformer P4

GRRM/HF/6-31G

01			
Ν	-0.076405	0.150621	0.008484
С	0.006116	-0.006859	1.458318
С	1.233131	0.107601	-0.614375
Н	-0.040922	-1.049141	1.772060
Н	-0.797754	0.527159	1.945657
С	1.381901	0.586789	1.768590
С	2.237316	0.137677	0.572774
Н	1.387454	0.964084	-1.260831
С	1.426627	-1.113731	-1.470721
Η	1.785396	0.245175	2.712860
Н	1.314804	1.667631	1.800120
Н	2.638071	-0.853007	0.753986
Н	3.072641	0.791896	0.372192
0	0.622618	-2.004112	-1.643720
Н	-0.813363	-0.316211	-0.469753
0	2.635345	-1.118468	-2.076839
Н	2.785571	-1.876860	-2.636542
options			
First	Only		

2. Input file for IRC around ComplexTS1a/Z1

#IRC/BHandHLYP/6-311++G**

01			
Ν	-0.158877286333	-0.144650112479	0.305019366169
С	0.469552916715	-0.158344585178	1.661964468285
С	0.951603058832	0.001014566377	-0.686475444246
Н	0.451524571280	-1.177237044750	2.024758919719
Н	-0.130721859561	0.448574295763	2.327747168314
С	1.896261856260	0.380031994230	1.469509094772
С	1.916742693544	0.925011907136	0.040278320455
Н	0.546232568915	0.435009734377	-1.593950352345
С	1.637592045152	-1.330173836156	-1.107771905497
Н	2.613983359560	-0.426674617035	1.565637824155
Н	2.145760036717	1.132734211577	2.207501640293
Н	2.895539007249	0.897846855757	-0.414865014360
Н	1.545652840706	1.947521386135	0.011070065695
Н	-0.757001840042	0.662771685588	0.224291864765
0	1.009416342054	-2.429467499600	-0.954390009519
Н	-0.098274028096	-2.473383647541	-0.564530523541
0	2.734526159566	-1.203764682405	-1.590309586222
0	-1.185532324675	-2.332872099609	-0.074746058574
Н	-0.803830683178	-1.097493264619	0.125131295781
Н	-1.904359122662	-2.561003376557	-0.651429645098
options			

DownDC=15

3. Input file for IRC around ComplexTS1a/2a

#IRC/BHandHLYP/6-311++G**

0.1			
N	-0.040071056520	-0 165154322079	0 177304930972
C	0.313447665091	-0.203476893483	1.602435189345
С	1.240921336658	-0.093227746442	-0.540882166436
Н	0.603021405737	-1.220187393780	1.855440759516
Н	-0.544092516904	0.055998845018	2.212333194238
С	1.494653256803	0.750396409830	1.741466131193
С	2.264306935639	0.558323589972	0.427774751255
Н	1.107712701438	0.510091128456	-1.433634478667
С	1.773710619903	-1.426521868951	-1.074337588845
Н	2.102901559360	0.542171912465	2.614516522049
Н	1.130837120611	1.770975396898	1.831605204823
Н	3.119767706015	-0.092516653842	0.549206497685
Н	2.635891449269	1.495816150316	0.033015665164
Н	-0.532946585208	0.695598129857	0.001791046691
0	0.963215485097	-2.459612765878	-1.181730292165
Н	0.056524479177	-2.326108793744	-0.876936445258
0	2.910790473278	-1.498658659336	-1.427323532831
0	-1.688112720650	-2.362217058438	-0.353810332977
Н	-1.450633163633	-1.452502352331	-0.139954303340
Н	-2.443613378157	-2.347279279485	-0.929971518403
optior	18		

DownDC=15

4. Input file for IRC around ComplexTS1a/1b

IRC/BHandHLYP/6-311++G**

01			
Ν	0.477457099270	0.926787305315	0.424400734740
С	0.373145316872	0.374044958682	1.783820236039
С	1.796112269029	0.601141029312	-0.131418445542
Н	-0.617310875809	-0.033973261636	1.964126792623
Н	0.557469570544	1.139106602840	2.537818283966
С	1.460371233040	-0.690162971776	1.841742343939
С	2.572681199084	-0.072425383498	1.002617796488
Н	2.304635100902	1.498020007855	-0.476017341474
С	1.719887176883	-0.298158818979	-1.367855751607
Н	1.110715153753	-1.611199750450	1.381956166692
Н	1.761978122467	-0.919039574699	2.857293306916
Н	3.295257240323	-0.783285514602	0.626563700347
Н	3.101448934617	0.680258854014	1.581211877650
Н	0.307517078583	1.914476329051	0.410166425582
0	0.558611614589	-0.369966911784	-1.986671272982
Н	-0.133877733654	0.129692403240	-1.535320356919
0	2.683775684245	-0.874903050515	-1.770911164489
0	-1.944009786946	0.791288709105	-1.375111289447
Н	-1.999902714954	0.703908452835	-0.429275810661
Н	-2.705930513214	0.355134591008	-1.741542351016

DownDC=15