## **Supporting Information**

# A simple and dual responsive efficient new Schiff base chemoreceptor for selective sensing of F<sup>-</sup> and Hg<sup>2+</sup>: application to bioimaging in living cells and mimicking of molecular logic gates<sup>†</sup>

Additi Roy Chowdhury,<sup>*ab*</sup> Pritam Ghosh,<sup>*a*</sup> Biswajit Gopal Roy,<sup>*c*</sup> Subhra Kanti Mukhopadhyay,<sup>*d*</sup> Partha Mitra<sup>*e*</sup> and Priyabrata Banerjee<sup>\**ab*</sup>

<sup>*a*</sup> Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, WB, India. Fax: +91-343- 2546 745; Tel: +91-343-6452220; E-mail: <u>*pr* banerjee@cmeri.res.in</u> and <u>*privabrata* banerjee@yahoo.co.in</u> Webpage: <u>www.cmeri.res.in</u> and <u>www.privabratabanerjee.in</u>

<sup>b</sup> Academy of Scientific and Innovative Research at CSIR-CMERI, Durgapur 713209,India.

<sup>c</sup> Department of Chemistry, Sikkim University, Gangtok-737102, Sikkim, India.

<sup>d</sup> Department of Microbiology, The University of Burdwan, Burdwan-713104, India.

<sup>e</sup> Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.







Fig. S4 Wireframe network showing intra & intermolecular hydrogen bonding in NPMP.

Table S1 Crystallographic data of NPMP

| Crystal Data             |                              |  |
|--------------------------|------------------------------|--|
| Formula                  | C13 H6 F5 N3 O3              |  |
| Formula Weight           | 347.21                       |  |
| Crystal System           | Monoclinic                   |  |
| Space group              | P21/c (No. 14)               |  |
| a, b, c [Angstrom]       | 8.404(2) 13.281(3) 11.867(3) |  |
| alpha, beta, gamma [deg] | 90 102.612(5) 90             |  |
| V [Ang**3]               | 1292.6(5)                    |  |
| Ζ                        | 4                            |  |
| D(calc) [g/cm**3]        | 1.784                        |  |
| Mu(MoKa) [ /mm ]         | 0.175                        |  |
| F(000)                   | 696                          |  |
| Crystal Size [mm]        | 0.16 x 0.18 x 0.24           |  |

| Data Collection                            |                                    |  |  |
|--------------------------------------------|------------------------------------|--|--|
| Temperature (K)                            | 293                                |  |  |
| Radiation [Angstrom]                       | МоКа 0.71073                       |  |  |
| Theta Min-Max [Deg]                        | 2.3, 25.0                          |  |  |
| Dataset                                    | -9: 9; -15: 15; -14: 14            |  |  |
| Tot., Uniq. Data, R(int)                   | 9515, 2166, 0.087                  |  |  |
| Observed data $[I > 2.0 \text{ sigma}(I)]$ | 1867                               |  |  |
| Refinement                                 |                                    |  |  |
| Nref, Npar                                 | 2166, 219                          |  |  |
| R, wR2, S                                  | 0.0751, 0.2322, 1.22               |  |  |
| $w = 1/[\sqrt{6^2}(Fo^2) + (0.1675P)^2]$   | where $P = (Fo^{2^+}+2Fc^{2^-})/3$ |  |  |
| Max. and Av. Shift/Error                   | 0.00, 0.00                         |  |  |
| Min. and Max. Resd. Dens. [e/Ang^3]        | -0.63, 0.59                        |  |  |

| F1 | -C1  | 1.357(3) | C2 -C3  | 1.374(3)    |
|----|------|----------|---------|-------------|
| F2 | -C2  | 1.344(3) | C3 -C4  | 1.378(4)    |
| F3 | -C3  | 1.352(3) | C4 -C5  | 1.395(4)    |
| F4 | -C4  | 1.340(3) | C5 -C6  | 1.397(3)    |
| F5 | -C5  | 1.345(3) | C7 -C8  | 1.447(4)    |
| 01 | -N3  | 1.230(3) | C8 -C1  | 3 1.434(4)  |
| 02 | -N3  | 1.241(3) | C8 -C9  | 1.405(4)    |
| 03 | -C13 | 1.346(3) | C9 -C1  | 0 1.375(4)  |
| 03 | -H3  | 0.8200   | C10 -C  | 11 1.404(4) |
| N1 | -N2  | 1.371(3) | C11 -C1 | 12 1.379(4) |
| N1 | -C6  | 1.382(3) | C12 -C1 | 13 1.393(4) |
| N2 | -C7  | 1.288(3) | С7 -Н7  | 7 0.9300    |
| N3 | -C10 | 1.452(4) | С9 -Н9  | 9 0.9300    |
| N1 | -H1  | 0.8600   | С11 -Н  | 11 0.9300   |
| C1 | -C6  | 1.395(4) | С12 -Н  | 12 0.9300   |
| C1 | -C2  | 1.380(4) |         |             |
|    |      |          |         |             |

Table S2 Selected bond distances (angstrom) of NPMP

## Table S3 Selected bond angles (degree) of NPMP

| C13 -O3 | -H3  | 110.00   | C1 -C6 -C5    | 116.0(2) |
|---------|------|----------|---------------|----------|
| N2 -N1  | -C6  | 121.1(2) | N1 -C6 -C5    | 126.4(2) |
| N1 -N2  | -C7  | 116.8(2) | N2 -C7 -C8    | 120.7(2) |
| O1 -N3  | -C10 | 118.4(2) | C7 -C8 -C13   | 122.8(2) |
| O2 -N3  | -C10 | 118.5(2) | C7 -C8 -C9    | 119.5(2) |
| O1 -N3  | -02  | 123.1(2) | C9 -C8 -C13   | 117.7(2) |
| N2 -N1  | -H1  | 119.00   | C8 -C9 -C10   | 120.2(2) |
| C6 -N1  | -H1  | 119.00   | N3 -C10 -C9   | 118.9(2) |
| C2 -C1  | -C6  | 123.0(2) | N3 -C10 -C11  | 119.1(2) |
| F1 -C1  | -C6  | 118.5(2) | C9 -C10 -C11  | 122.1(2) |
| F1 -C1  | -C2  | 118.5(2) | C10 -C11 -C12 | 118.9(2) |
| C1 -C2  | -C3  | 119.8(2) | C11 -C12 -C13 | 120.5(2) |
| F2 -C2  | -C3  | 120.6(2) | O3 -C13 -C8   | 121.4(2) |
| F2 -C2  | -C1  | 119.6(2) | O3 -C13 -C12  | 117.9(2) |
| F3 -C3  | -C2  | 120.3(2) | C8 -C13 -C12  | 120.7(2) |
| F3 -C3  | -C4  | 120.3(2) | N2 -C7 -H7    | 120.00   |
| C2 -C3  | -C4  | 119.4(2) | С8 -С7 -Н7    | 120.00   |
| C3 -C4  | -C5  | 120.5(2) | С8 -С9 -Н9    | 120.00   |
| F4 -C4  | -C3  | 120.9(2) | С10 -С9 -Н9   | 120.00   |
| F4 -C4  | -C5  | 118.6(2) | C10 -C11 -H11 | 121.00   |
| F5 -C5  | -C4  | 116.7(2) | С12 -С11 -Н11 | 121.00   |
| F5 -C5  | -C6  | 122.0(2) | С11 -С12 -Н12 | 120.00   |
| C4 -C5  | -C6  | 121.4(2) | С13 -С12 -Н12 | 120.00   |
| N1 -C6  | -C1  | 117.6(2) |               |          |
|         |      |          |               |          |

#### Table S4 Hydrogen bonding in NPMP

| N1 H1 F1 | 0.8600 | 2.3400 2.682(3) | 104.00 |       |
|----------|--------|-----------------|--------|-------|
| N1 H1 O1 | 0.8600 | 2.2200 3.065(3) | 168.00 | 2_746 |
| O3 H3 F5 | 0.8200 | 2.3800 3.029(3) | 136.00 |       |
| O3 H3 N2 | 0.8200 | 1.9200 2.643(3) | 147.00 |       |
| С7 Н7 О2 | 0.9300 | 2.4600 3.365(4) | 165.00 | 2_746 |



Fig. S5 UV-Vis spectrum of NPMP in DMSO.

### Benesi-Hildebrand Equation and Plot:

The association constant of a complex formed in between NPMP and F- has been determined from the following complex equilibrium.

$$L + mX^{n-} \longrightarrow (X_mL)^{mn}$$

$$\frac{[(X_mL)]^{mn}}{[L][X^{n-}]m}_{K=1}$$

For 1:1 type complex formation with m=1 following the Benesi-Hildebrand relation, can be expressed in terms of optical density (A) as follows:

$$\frac{A_o + A_1 K[X^{n-}]}{1 + K[X^{n-}]}_{A=}$$

Or, 
$$\frac{1}{A - A_0} = \frac{1}{(A_1 - A_0)} + \frac{1}{(A_1 - A_0)K[X^{n-1}]}$$

Where  $[X^{n-}]$ , [L] and  $[(X_mL)^{mn-}]$  are the concentration of the added anion, receptor and the complexation between anions and receptors, respectively.  $A_o$ , A and  $A_1$  indicates the optical density or absorbance at a particular wavelength of **NPMP** without adding any anion, absorbance after adding anion at every successive step and excess amount of added anion, respectively. The binding constant or association constant K (M<sup>-1</sup> or M<sup>-2</sup>) is determined from the ratio of intercept and slope of Benesi-Hildebrand plot of optical density.



**Fig. S7** (a) UV-Vis spectral changes of **NPMP** ( $2x10^{-5}M$ ) with other **TBA** salts of in 9:1 v/v DMSO-HEPES buffer at pH 7.4 (0-2eq), (b) 2D plot showing interference of F<sup>-</sup> in presence of other anions.



Fig. S8 UV-Vis spectral changes of NPMP ( $2x10^{-5}M$ ) with TBA salts of OAc<sup>-</sup> in 9:1 v/v DMSO-HEPES buffer at pH 7.4 (0-2eq).



**Fig. S9** UV-Vis spectral changes of **NPMP** ( $2x10^{-5}M$ ) with F<sup>-</sup> ( $2x10^{-4}M$ ) followed by Hg<sup>2+</sup> ( $10^{-4}M$ ) and further addition of F<sup>-</sup> in 9:1  $\nu/\nu$  DMSO- HEPES buffer at pH 7.4 in same repetitive manner.



Fig. S10 Repeatability experimentation of NPMP in presence of F<sup>-</sup> and Hg<sup>2+</sup>.



**Fig. S11** Intensity changes of **NPMP** (2x10<sup>-6</sup>M) after addition of F-(2x10<sup>-5</sup>M) and Hg<sup>2+</sup> (10<sup>-5</sup>M) in 9:1 v/v DMSO-HEPES buffer at pH 7.4 (0-2eq).



Fig. S12 Plot of ratio of emission intensity vs equivalent of F<sup>-</sup> for calculation of limit of detection.

#### **Preparation of cells**

*Candida albicans* cells (IMTECH No. 3018) from exponentially growing culture in yeast extract glucose broth medium (pH 6.0 and incubation temperature  $37^{\circ}$ C) were washed by suspending them in normal saline and centrifuged at 3000 rpm for 10 minutes. It was washed twice with 0.1 M HEPES buffer (pH 7.4). Then cells were treated with F<sup>-</sup> solution (10 µM) for 1hr (Fig. 8a). After incubation, the cells were again washed with HEPES buffer and then incubated with **NPMP** (100 µM) for another 1hr. Cells obtained this way were mounted on a grease free glass slide and observed under a Leica DM 1000 Fluorescence microscope with UV filter (Fig. 8c). Cells treated with F<sup>-</sup> were used as control.

**Preparation of pollen grains to detect intracellular F**<sup>-</sup>: Pollen grains of *Techoma stans* (Family: Bignoniaceae) were collected from fresh buds and washed twice with 0.1 M HEPES buffer at pH 7.4. These were then treated with 10  $\mu$ M F<sup>-</sup> for 1hr in 0.1 M HEPES buffer (pH 7.4) containing 0.01% Triton X100 as a permeability enhancing agent(Fig. 8b). After incubation the pollens are washed again with HEPES buffer at pH 7.4 and incubated with **NPMP** (100  $\mu$ M) for 1hr. **NPMP** treated pollens were washed by centrifugation (3000 rpm for 5 minutes) using HEPES buffer and are mounted on a grease free glass slide and observed under a Leica DM 1000

fluorescence microscope equipped with a UV filter (Fig. 8d). Cells treated with  $F^-$  were used as control.