Supporting Information

A simple and dual responsive efficient new Schiff base chemoreceptor for selective sensing of \mathbf{F}^{-}and $\mathbf{H g}^{\mathbf{2 +}}$: application to bioimaging in living cells and mimicking of molecular logic gates \dagger

Additi Roy Chowdhury, ${ }^{a b}$ Pritam Ghosh, ${ }^{a}$ Biswajit Gopal Roy, ${ }^{c}$ Subhra Kanti Mukhopadhyay, ${ }^{d}$ Partha Mitra ${ }^{e}$ and Priyabrata Banerjee*ab
${ }^{a}$ Surface Engineering \& Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, WB, India. Fax: +91-343- 2546 745; Tel: +91-343-6452220; E-mail: prbanerjee@cmeri.res.in and priyabrata banerjee@yahoo.co.in Webpage: www.cmeri.res.in and www.priyabratabanerjee.in
${ }^{b}$ Academy of Scientific and Innovative Research at CSIR-CMERI, Durgapur 713209,India.
${ }^{c}$ Department of Chemistry, Sikkim University, Gangtok-737102, Sikkim, India.
${ }^{d}$ Department of Microbiology, The University of Burdwan, Burdwan-713104, India.
${ }^{e}$ Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

Fig. S1 IR data of NPMP.

Intensity

Fig. S2 ESI-Mass data of NPMP.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR data of NPMP in DMSO- d_{6}.

Fig. S4 Wireframe network showing intra \& intermolecular hydrogen bonding in NPMP.
Table S1 Crystallographic data of NPMP

Crystal Data	
Formula	C13 H6 F5 N3 O3
Formula Weight	347.21
Crystal System	Monoclinic
Space group	P21/c (No. 14)
a, b, c [Angstrom]	8.404(2) 13.281(3) 11.867(3)
alpha, beta, gamma [deg]	$90 \quad 102.612(5) \quad 90$
V [Ang**3]	1292.6(5)
Z	4
D(calc) [g/cm**3]	1.784
$\mathrm{Mu}(\mathrm{MoKa})$ [/mm]	0.175
F(000)	696
Crystal Size [mm]	$0.16 \times 0.18 \times 0.24$

Data Collection	
Temperature (K)	293
Radiation [Angstrom]	MoKa 0.71073
Theta Min-Max [Deg]	2.3, 25.0
Dataset	-9: 9;-15: $15 ;-14: 14$
Tot., Uniq. Data, R(int)	9515, 2166, 0.087
Observed data [I>2.0 sigma(I)]	1867
Refinement	
Nref, Npar	2166, 219
R, wR2, S	0.0751, 0.2322, 1.22
$\mathrm{w}=1 /\left[\backslash \mathrm{s}^{\wedge} 2^{\wedge}\left(\mathrm{Fo}^{\wedge} 2^{\wedge}\right)+(0.1675 \mathrm{P})^{\wedge} 2^{\wedge}\right]$	where $\mathrm{P}=\left(\mathrm{Fo}^{\wedge} 2^{\wedge}+2 \mathrm{Fc}^{\wedge} 2^{\wedge}\right) / 3$
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. [e/Ang^3]	-0.63, 0.59

Table S2 Selected bond distances (angstrom) of NPMP

F1	-C1	1.357(3)	C2	-C3	1.374(3)
F2	-C2	1.344(3)	C3	-C4	1.378(4)
F3	-C3	1.352(3)	C4	-C5	1.395(4)
F4	-C4	1.340(3)	C5	-C6	1.397(3)
F5	-C5	1.345(3)	C7	-C8	1.447(4)
O1	-N3	1.230(3)	C8	-C13	1.434(4)
O2	-N3	1.241(3)	C8	-C9	1.405(4)
O3	-C13	$1.346(3)$	C9	-C10	1.375(4)
O3	-H3	0.8200	C10	-C11	1.404(4)
N1	-N2	1.371(3)	C11	-C12	1.379(4)
N1	-C6	1.382(3)	C12	-C13	1.393(4)
N2	-C7	$1.288(3)$	C7	-H7	0.9300
N3	-C10	1.452(4)	C9	-H9	0.9300
N1	-H1	0.8600	C11	-H11	0.9300
C1	-C6	1.395(4)	C12	-H12	0.9300
C1	-C2	1.380(4)			

Table S3 Selected bond angles (degree) of NPMP

C13	-O3	-H3	110.00	C1	-C6	-C5	116.0(2)
N2	-N1	-C6	121.1(2)	N1	-C6	-C5	126.4(2)
N1	-N2	-C7	116.8(2)	N2	-C7	-C8	120.7(2)
O1	-N3	-C10	118.4(2)	C7	-C8	-C13	122.8(2)
O2	-N3	-C10	118.5(2)	C7	-C8	-C9	119.5(2)
O1	-N3	-O2	123.1(2)	C9	-C8	-C13	117.7(2)
N2	-N1	-H1	119.00	C8	-C9	-C10	120.2(2)
C6	-N1	-H1	119.00	N3	-C10	-C9	118.9(2)
C2	-C1	-C6	123.0(2)	N3	-C10	-C11	119.1(2)
F1	-C1	-C6	118.5(2)	C9	-C10	-C11	122.1(2)
F1	-C1	-C2	118.5(2)	C10	-C11	-C12	118.9(2)
C1	-C2	-C3	119.8(2)	C11	-C12	-C13	120.5(2)
F2	-C2	-C3	120.6(2)	O3	-C13	-C8	121.4(2)
F2	-C2	-C1	119.6(2)	O3	-C13	-C12	117.9(2)
F3	-C3	-C2	120.3(2)	C8	-C13	-C12	120.7(2)
F3	-C3	-C4	120.3(2)	N2	-C7	-H7	120.00
C2	-C3	-C4	119.4(2)	C8	-C7	-H7	120.00
C3	-C4	-C5	120.5(2)	C8	-C9	-H9	120.00
F4	-C4	-C3	120.9(2)	C10	-C9	-H9	120.00
F4	-C4	-C5	118.6(2)	C10	-C11	-H11	121.00
F5	-C5	-C4	116.7(2)	C12	-C11	-H11	121.00
F5	-C5	-C6	122.0(2)	C11	-C12	-H12	120.00
C4	-C5	-C6	121.4(2)	C13	-C12	-H12	120.00
N1	-C6	-C1	117.6(2)				

Table S4 Hydrogen bonding in NPMP

N1	-- H1	.. F1	0.8600	2.3400	$2.682(3)$	104.00	.
N1	-- H1	.. O1	0.8600	2.2200	$3.065(3)$	168.00	$2 _746$
O3	-- H3	.. F5	0.8200	2.3800	$3.029(3)$	136.00	.
O3	-- H3	.. N2	0.8200	1.9200	$2.643(3)$	147.00	.
C7	-- H7	.. O2	0.9300	2.4600	$3.365(4)$	165.00	$2 _746$

Fig. 55 UV-Vis spectrum of NPMP in DMSO.

Benesi-Hildebrand Equation and Plot:

The association constant of a complex formed in between NPMP and F^{-}has been determined from the following complex equilibrium.

For 1:1 type complex formation with $\mathrm{m}=1$ following the Benesi-Hildebrand relation, can be expressed in terms of optical density (A) as follows:

$$
\begin{aligned}
& \frac{A_{o}+A_{1} K\left[X^{n-}\right]}{1+K\left[X^{n-}\right]} \\
& \quad \text { Or, } \quad \frac{1}{A-A_{0}}=\frac{1}{\left(A_{1}-A_{0}\right)}+\frac{1}{\left(A_{1}-A_{0}\right) K\left[X^{n-}\right]}
\end{aligned}
$$

Where $\left[\mathrm{X}^{\mathrm{n}}\right],[\mathrm{L}]$ and $\left[\left(\mathrm{X}_{\mathrm{m}} \mathrm{L}\right)^{\mathrm{mn}}\right]$ are the concentration of the added anion, receptor and the complexation between anions and receptors, respectively. $\mathrm{A}_{0}, \mathrm{~A}$ and A_{1} indicates the optical density or absorbance at a particular wavelength of NPMP without adding any anion, absorbance after adding anion at every successive step and excess amount of added anion, respectively. The binding constant or association constant $\mathrm{K}\left(\mathrm{M}^{-1}\right.$ or $\left.\mathrm{M}^{-2}\right)$ is determined from the ratio of intercept and slope of Benesi-Hildebrand plot of optical density.

Fig. S6 B-H plot of NPMP $v s$. TBAF.

Fig. S7 (a) UV-Vis spectral changes of NPMP $\left(2 \times 10^{-5} \mathrm{M}\right)$ with other TBA salts of in 9:1 v / v DMSOHEPES buffer at pH 7.4 ($0-2 \mathrm{eq}$), (b) 2D plot showing interference of F^{-}in presence of other anions.

Fig. S8 UV-Vis spectral changes of NPMP $\left(2 \times 10^{-5} \mathrm{M}\right)$ with TBA salts of OAc in $9: 1 \mathrm{v} / v$ DMSO-HEPES buffer at pH 7.4 (0-2eq).

Fig. S9 UV-Vis spectral changes of NPMP $\left(2 \times 10^{-5} \mathrm{M}\right)$ with $\mathrm{F}^{-}\left(2 \times 10^{-4} \mathrm{M}\right)$ followed by $\mathrm{Hg}^{2+}\left(10^{-4} \mathrm{M}\right)$ and further addition of F^{-}in $9: 1 \mathrm{v} / \mathrm{v}$ DMSO- HEPES buffer at pH 7.4 in same repetitive manner.

Fig. S10 Repeatability experimentation of NPMP in presence of F^{-}and Hg^{2+}.

Fig. S11 Intensity changes of NPMP $\left(2 \times 10^{-6} \mathrm{M}\right)$ after addition of $\mathrm{F}^{-}\left(2 \times 10^{-5} \mathrm{M}\right)$ and $\mathrm{Hg}^{2+}\left(10^{-5} \mathrm{M}\right)$ in $9: 1 \mathrm{v} / \mathrm{v}$ DMSO-HEPES buffer at pH 7.4 (0-2eq).

Fig. S12 Plot of ratio of emission intensity $v s$ equivalent of F^{-}for calculation of limit of detection.

Preparation of cells

Candida albicans cells (IMTECH No. 3018) from exponentially growing culture in yeast extract glucose broth medium (pH 6.0 and incubation temperature $37^{\circ} \mathrm{C}$) were washed by suspending them in normal saline and centrifuged at 3000 rpm for 10 minutes. It was washed twice with 0.1 M HEPES buffer (pH 7.4). Then cells were treated with F^{-}solution ($10 \mu \mathrm{M}$) for 1 hr (Fig. 8a). After incubation, the cells were again washed with HEPES buffer and then incubated with NPMP $(100 \mu \mathrm{M})$ for another 1 hr . Cells obtained this way were mounted on a grease free glass slide and observed under a Leica DM 1000 Fluorescence microscope with UV filter (Fig. 8c). Cells treated with F^{-}were used as control.

Preparation of pollen grains to detect intracellular F-: Pollen grains of Techoma stans (Family: Bignoniaceae) were collected from fresh buds and washed twice with 0.1 M HEPES buffer at pH 7.4 . These were then treated with $10 \mu \mathrm{M} \mathrm{F}$ for 1 hr in 0.1 M HEPES buffer (pH 7.4) containing 0.01% Triton X100 as a permeability enhancing agent(Fig. 8b). After incubation the pollens are washed again with HEPES buffer at pH 7.4 and incubated with NPMP $(100 \mu \mathrm{M})$ for 1 hr . NPMP treated pollens were washed by centrifugation (3000 rpm for 5 minutes) using HEPES buffer and are mounted on a grease free glass slide and observed under a Leica DM 1000
fluorescence microscope equipped with a UV filter (Fig. 8d). Cells treated with F- were used as control.

