Supporting information for

The coarse-grained model for water/oil/solid system: based on

the correlation of water/air and water/oil contact angles

Pan Wang,^{ab} Zhen Li,^{ab} Yunyun Ma,^{ab} XiaoliSun,^a Zhibin Liu,^{ab} and Jun Zhang^{*,ab}

^aCollege of Science, China University of Petroleum, 266580Qingdao, Shandong,

People's Republic of China

^bKey Laboratory of New Energy Physics & Materials Science in Universities of

Shandong, China University of Petroleum, 266580 Qingdao, Shandong, People's

Republic of China

Corresponding Authors

*Email: zhangjun.upc@gmail.com

1. Comparison of Bartell-Osterhof equation and the result of CGMD simulation

Figure S1 Comparison of Bartell-Osterhof equation (squares) and the results of CG MD simulation (circles) for the different water/solid interaction(top, water/solid 0.75;

Middle, water-solid 0.5; bottom, water/solid 0.15)

Figure S1 as obtained as following: Firstly, the water/solid interactions were set to 0.15, 0.5 and 0.75, respectively, and the $\cos(\theta_{wa})$ as obtained with the model (Figure 1 in the Manuscript). Secondly, the dodecane/solid interactions (in fact, the CT&CM-solid interactions) were set as 0.05 to 0.5, each per 0.05, respectively. The $\cos(\theta_{oa})$ were also calculated based on the model (Figure 1 in the Manuscript). Thirdly, the eq. 1 is translated to eq. 2, and a total of 30 $\cos(\theta_{ow})$ s were obtained by combination of any water/solid and oil/solid parameters mentioned above. Finally, a total of 30 CG MD have been carried out under the different combinations of above parameters. Figure S1 was painted via comparing the CG MD results and the calculated data based on eq. S2.

$$\sigma_{wa} \cos \theta_{wa} = \sigma_{wo} \cos \theta_{wo} + \sigma_{oa} \cos \theta_{oa}$$
(S1)

$$\cos\theta_{wo} = \frac{\sigma_{wa}\cos\theta_{wa} - \sigma_{oa}\cos\theta_{oa}}{\sigma_{wo}}$$
(S2)

2. Water/alkanes system

2.1 Bonded interactions

Bonded interactions were calculated by a weak harmonic potential U_{Ronded} (eq. 4). The bond interaction parameters and angle interaction parameters were adjusted by comparing corresponding bonds and angles, which were obtained from atomistic simulations respectively. Firstly, the Amorphous Cell tool of Materials Studio (AccelrysInc) was used to construct different systems (the hexane, nonane, dodecane and pentadecane systems, the number of moleculesare 100 composed by different molecular fragments, Equivalent to one CG interaction site). The periodic boundary condition was taken into account in all direction. Secondly AA MD was performed by discover tool of Materials Studio, the interatomic interactions were described by the forcefield of a condensed-phase optimized molecular potential for atomistic simulation studies (COMPASS)¹. All the models were put into a npt ensemble, a fixed time sep of 1 fs was used and a 1 ns simulation time was performed, the last 0.5 ns was used for the data analysis. Thirdly, the bond stretch and angle bend distributions of the center of mass (COM) of different molecular fragments were generated. Gaussian distribution fitted these distributions and the fitting parameters were shown in Table S1 (Column AA MD). Finally, the Mesostructure model of Materials Studio (AccelrysInc) was used to construct different systems correspond to the AA MD systems, and these models were calculated with the time step of 10 fs in the npt ensemble. The bond stretch and angle bend distribution of CG MD were generated and the Gaussian distribution also fitted these distributions. The CG Bonded interactions were adjusted successively until the fitting parameters of CG is consistent with AA parameters. All spring constants and equilibrium constants were

shown in Table S1.

	AA	MD	Bonded parameters		CGMD	
Bond	σ	μ	K _{stertch}	R ₀	σ	μ
CT-CT	0.24	3.74	10.89	3.77	0.24	3.73
CT-CM	0.23	3.69	11.54	3.73	0.23	3.69
CM-CM	0.23	3.66	11.35	3.71	0.23	3.67
Angle	σ	μ	K _{bend}	θο	σ	μ
CT-CM-CT	19.02	149.42	4.20	158	19.00	148.51
CT-CM-CM	19.00	149.09	4.20	158	19.00	148.51
CM-CM-CM	19.30	148.83	4.22	157	19.13	148.23

Table S1 The Gaussian fitting parameters of AAMD、 CGMD and the final bondedparameters

2.2 Non-bonded interactions

We introduced models and aprocedure to obtain the intra water, the intra alkanes and the inter alkanes/water interaction parameters respectively.

Model and Setup

The non-bond interactions were fitted through experimental density and surface/interfacial tension data. The simulation boxes with size 4.0*4.0*4.0 nm³ are filled with liquid, which was carried out in npt ensemble to generate the density data. And the simulation boxes, 8.0*4.0*4.0 nm³ with a 4.0 nm-long liquid slab, were carried out in nvt ensemble, which are used to generate the surface tension data. The simulation boxes, 8.0*4.0*4.0nm³ with a water slab and an alkane slab were carried out in npt ensemble, which are used to generate the water/alkanes interfacial tension data. The temperature was maintained at 298 K and the time step

is 10 fs for all the simulation. The surface tension is computed by equation $S3^2$.

$$\sigma = \frac{L_z}{2} [P_{zz} - \frac{P_{xx} + P_{yy}}{2}],$$
(S3)

Water

The water/water interaction parameters were determined by experimental surface tension and density data. The CG water/water interaction parameter was adjusted successively until that the density and surface tension of CG is consistent with AA parameters (Table S2).

IJ	D ₀ (Kcal/mol)	R(Å)	density (g/cm^3)		Surface tension(N/m)	
			EXP ^a	CGMD	EXP ^a	CGMD
12-4	0.86	5.01	0.997	1.000	71.99	71.06

Table S2 Surface tension and density of the CG model for water

^aExperimental data are taken from Ref 3

Alkanes

There are two interaction sites, CT (CH₃-CH₂-CH₂-), CM (-CH₂-CH₂-CH₂-), and by combination of them a variety of alkanes could be built. The LJ9-6 was used as non-bonded interaction form. The CT-CT parameters were obtained using hexane. CM-CM parameters were determined through nonane, and CT-CM interaction parameters were calculated by Lorentz combining rules. Based on above parameters, surface tension and density of dodecane and pentadecane were calculated. Results of different alkanes by CG MD method were compared with experimental data and these values revealed a good agreementas shown in Table S3.

Table S3 Surface tension and density of the CG model for pure alkanes

	Interaction sites	Density(g/cm ³)		Surface tension(N/m)	
System		EXP ^a	CGMD	EXP ^a	CGMD
Hexane	Ct-ct	0.656	0.657	17.98	18.20
Nonane	Ct-cm-ct	0.715	0.715	22.43	22.12
Dodecane	Ct-cm-cm-ct	0.745	0.745	24.94	24.27
pentadecane	Ct-cm-cm-cm-ct	0.765	0.763	26.68	25.89

^aExperimental data are taken from Ref³

Alkanes/Water interaction

Parameters for the interactions between alkanes interaction sites and water are actually the interaction of CT-W, CM-W. The LJ12-4 was used as non-bonded interaction form, and the interfacial tension of water/alkaneswas used to fit the non-bonded interaction parameters (CT-W, CM-W). Both CGMD and experimental results are shown in Table S4. All interaction parameters are shown in Table S5.

Table S4 Interfacial tension of the CG model for water/alkanes interface

Custom		Interface tension(N/m)			
System	Interaction sites	EXP ^a	CGMD		
Hexane-Water	CT-W	50.38	50.57		
Nonane-Water	CT-W, CM-W	51.63	51.85		
Dodecane-Water	CT-W, CM-W	52.55	52.43		
Pentadecane-Water	CT-W, CM-W	53.29(fitting)	52.96		

^aExperimental data are taken from Ref⁴

Table S5 Non-bonded and Bonded interaction parameters

Non-bond interactions							
Bead-1	Bead-2	LJ-Form	D ₀ (Kcal/mol)	R(Å)	R _{cut} (Å)	Т(К)	
W	W	12-4	0.860	5.010	12.5	298	
W	СТ	12-4	0.345	5.115	12.5	298	
W	СМ	12-4	0.335	5.055	12.5	298	
СТ	СТ	9-6	0.470	5.220	12.5	298	
СТ	СМ	9-6	0.450	5.160	12.5	298	
CM	СМ	9-6	0.430	5.100	12.5	298	
Bond int	Bond interaction						
Bead-1	Bead-2	Functional form	K _{stertch} (Kcal/mol/ Å ²)	R _o (Å)	R _{cut} (Å)	Т(К)	
СТ	СТ	Harmonic	10.89	3.77	12.5	298	

СТ	СМ	Harmonic	11.54	3.73	12.5		298
СМ	СМ	Harmonic	11.35	3.71	12.5		298
Anlge in	teraction						
Bead-1	Bead-2	Bead-3	Functional form	K _{bend} (Kcal/mol/rad ²)	R ₀ (⁰)	R _{cut} (Å)	Т(К)
СТ	СМ	СТ	Harmonic	4.17	157	12.5	298
СТ	СМ	СМ	Harmonic	4.17	158	12.5	298
CM	СМ	СМ	Harmonic	4.60	155	12.5	298

References

- 1 Sun, H., J. Phys. Chem. B 1998, 102, 7338-7364.
- 2 Shinoda, W., DeVane, R. and Klein, M. L, *Molecular Simulation* 2007, 33:1, 27 36.
- 3 Yaws, C. L., Chemical Properties Handbook. McGraw-Hill:New York, 1999.
- 4 Zeppieri, S.; Rodríguez, J.; López de Ramos, A. L., J. Chem. Eng. Data 2001, 46, 1086-1088.