SUPPLEMETARY MATERIALS

An efficient Vanillinyl Schiff base as a turn on fluorescent probe for Zinc(II) and Cell imaging

Anup Kumar Bhanja, Chiranjit Patra, Sudipa Mondal, Durbadal Ojha, Debprasad Chattopadhyay, Chittaranjan Sinha*

Fig. S1. FT-IR spectrum of H₂L in KBr disc

Fig. S2. Mass spectrum of H₂L

Fig. S3. ¹HNMR spectrum of H₂L in CDCl₃

Fig: S4. Absorbance spectra of H_2L upon addition of various metal ions in DMSO– buffer (HEPES, pH = 7.4) (v/v = 3/7) solution

OPTICAL DETECTION LIMIT:

Fig. S4. The linear dynamic response of H_2L for Zn^{2+} and the determination of the detection limit (LOD) for Zn^{2+}

BINDING CONSTANT

 Fig. S5. Benesi-Hildebrand plot of {(Fmax-Fo)/(F-Fo)} vs. 1/[Zn2+].

 Benesi-Hildebrand equation is given as:

 F_0 is the fluorescence of HL in the absence of externally added Zn^{2+} , F is the fluorescence obtained a different $[Zn^{2+}]$ ($\lambda ex = 346$ nm and $\lambda em = 470$ nm] and with Fmax is the fluorescence of HL at $[Zn^{2+}]$ in large excess. K (M-2) is the association constant.

Fig. S6.. Change in fluorescence intensity of H_2L upon addition of 50 μ M Fe²⁺ in DMSO/Water (HEPES buffer, pH, 7.4; v/v, 3/7).

Fig. S7. Comparison of emission of H₂L and [ZnL] under illumination in UV chamber

Fig. S9. FT-IR spectrum of [ZnL] in KBr disc

Fig. S10. ¹H NMR spectrum of [ZnL] in DMSO-d₆

Fig S11: Frontier molecular orbitals of H_2L

Fig S11: Frontier molecular orbitals of [ZnL]

Orbital	Energy(eV)	Composition		
		Metal	Ligand	
LUMO+10	1.61	14	86	
LUMO+9	1.56	3	97	
LUMO+8	1.43	9	91	
LUMO+7	0.54	1	99	
LUMO+6	0.54	0	100	
LUMO+5	0.14	1	99	
LUMO+4	0.12	1	99	
LUMO+3	-0.38	1	99	
LUMO+2	-0.42	0	100	
LUMO+1	-1.56	0	100	
LUMO	-1.58	0	100	
НОМО	-5.09	1	99	
HOMO-1	-5.18	1	99	
НОМО-2	-5.69	0	100	
НОМО-3	-5.72	0	100	
НОМО-4	-6.16	2	98	
НОМО-5	-6.28	2	98	
НОМО-6	-6.77	1	99	
HOMO-7	-6.87	1	99	
HOMO-8	-7.01	0	100	
НОМО-9	-7.02	0	100	
HOMO-10	-7.86	3	97	

 Table S1. Composition and energy of MOs [ZnL]

Compd	Experimental	Theoretical	Electronic Transition	f	Character
	$[\lambda_{exp}(nm)]$	$[\lambda_{\text{theo}} (\text{nm})]$			
HL	373	362	$S_0 \rightarrow S_2 [HOMO-1 \rightarrow LUMO (86\%)]$	0.2995	ILCT
HL	290	303	$S_0 \rightarrow S_6$ [HOMO-3 \rightarrow LUMO (72%),	0.1216	ILCT
[ZnL]	400	392	$S_0 \rightarrow S_1 [HOMO \rightarrow LUMO(98\%)]$	0.1013	ILCT
[ZnL]	316	331	$S_0 \rightarrow S_4 [HOMO-2 \rightarrow LUMO (82\%)]$	0.4958	ILCT

Table S2: Comparison of theoretical and experimental spectral transitions and theirassignment in H_2L and [ZnL]

Table S3: Bond parameters of H_2L

Bond Distance (Å)		Bond angle (°)	
O(1)-C(2)	1.353	O(1)-C(2)-C(3)	118.35
C(17)-O(18)	1.361		
C(4)-N(5)	1.281	C(4)-N(5)-C(6)	120.59
N(14)-C(15)	1.283		
N(5)-C(6)	1.398	C(7)-O(8)-C(9)	119.98
C(13)-N(14)	1.404		
C(7)-O(8)	1.361	C(9)-C(10)-O(11)	108.36
O(11)-C(12)	1.366		
O(8)-C(9)	1.421	C(10)-O(11)-C(12)	121.20
C(10)-O(11)	1.434		

 Table S4:
 Bond parameters of [ZnL]

Bond Distance (Å)		Bond angle (°)	
Zn-O(1)	1.993	O(1)-Zn-N(5)	88.66
Zn-O(18)	1.993	O(18)-Zn-N(14)	88.66
Zn-N(5)	2.131	N(5)-Zn-O(8)	71.17
Zn-N(14)	2.132	N(14)-Zn-O(11)	71.16
Zn-O(8)	2.493	O(8)-Zn-O(18)	88.66
Zn-O(8)	2.492	O(11)-Zn-O(1)	88.67
O(1)-C(2)	1.317	O(1)-C(2)-C(3)	122.89
C(17)-O(18)	1.317		
C(4)-N(5)	1.325	C(4)-N(5)-C(6)	120.65
N(14)-C(15)	1.326		
C(7)-O(8)	1.419	C(7)-O(8)-C(9)	114.95
O(11)-C(12)	1.420		
O(8)-C(9)	1.474	C(9)-C(10)-O(11)	106.59
C(10)-O(11)	1.475		