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S1: Single particle orbitals and density of states
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FIG. S1: DOS of (a) un-doped ZnO wire, (b) IZO wire, configuration 1, (c) IZO wire, configuration

2, (d) IZO bulk, for the entire calculated energy range. Dashed vertical lines identify the Fermi

level of each metallic system. Zero energy reference is set to the valence band top of un-doped

hosts.
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FIG. S2: Isosurface plots of selected Kohn Sham single particle orbitals at Γ point for undoped

ZnO wire.

FIG. S3: Isosurface plots of selected Kohn Sham single particle orbitals at Γ point for IZO(1) wire.

FIG. S4: Isosurface plots of selected Kohn Sham single particle orbitals at Γ point for IZO(2) wire.

3



S2: Complex dielectric function analysis

For the analysis of the optical properties of the systems presented in the main text

we adopted a solid-state implementation of a Drude-Lorentz expression for the complex

dielectric function ε̂(ω) = ε1 + iε2. [1] The real (ε1) and imaginary (ε2) part of the dielectric

function are respectively:
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where ωp is the plasma frequency, ~ωk,n,n′ = Ek,n − Ek,n′ is the vertical band-to-band

transition energy between occupied and empty Bloch states labeled by the quantum num-

bers {k, n} and {k, n′}. η,Γ → 0+ are the Drude-like and Lorentz-like relaxation terms

associated to intra-band and inter-band transitions respectively, while fn,n
k and fn,n′

k are the

corresponding oscillator strengths. See also Ref. [2] for further details.

The results of the dielectric function simulations are shown in Figure S5. The results

are in agreement with what observed for Al-ZnO systems: The undoped wire exhibits the

typical features of a semiconductor: ε1 is always positive and reaches the dielectric constant

value ε∞ = 1.3 in the limit for ω → 0+, although this value is rather smaller than the

3D ZnO case (ε∞ = 3.0). The imaginary part ε2, which is proportional to the absorption

spectrum, is zero in the IR and visible range and has the first adsorption edge in the UV

(i.e. the ZnO wire is transparent).

After the inclusion of the In impurities, the dielectric function assumes a metallic behav-

ior: in the low-energy range ε2 is positive and diverges for ω → 0+, which corresponds to the

dc conductivity of simple metals, while ε1 is negative, in agreement with the formation of a

free electron gas. In the UV range, the energy position of the lowest-energy peak, Eopt
g , cor-

responds to the interband valence-to-conduction absorption edge, and is system-dependent

(see Table 1 main text). A doping-induced blue-shift of the absorption edge is present in all

cases, and may be explained in terms of the Burnstein-Moss model. The transparency in

the visible range along with the electrical n-type characteristics confirms the TCO behavior

displayed by both wire and bulk IZO compounds.
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FIG. S5: Real (red line) and imaginary (black line) part of complex dielectric function ε̂ of (a)

undoped ZnO wire, (b) IZO wire, configuration 1, (c) IZO wire, configuration 2, (d) IZO bulk.

S3: Thermal transport analysis

In aperiodic system, at a given wavenumber, the quantum transmittance Tph is a pro-

portional to the number of transmitting channels available for phonon mobility, which are

equal to the number of conducting bands at the same energy. This is proved in Figure S6,

where the phonon band structucture and the transmittance plot are compared.

The phonon thermal conductance Kph can be obtained from Tph via direct integration:

Kph(T ) =
1

2π~

∫ ∞
0

d(~ω)Tph(ω)~ω
[∂n(T, ω)

∂T

]
, (3)

where n(T, ω) is the Boltzman distribution at temperature T . Resulting conductance

plot is displayed in Figure S7.
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FIG. S6: (left) Phonon dispersion relation along the direction parallel to the wire axis. (right)

Thermal transmittance spectrum.
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FIG. S7: Phonon thermal conductance of undoped ZnO wire, as a function of temperature.
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S4: Figure of merit in coherent approximation

The figure of merit of a thermoelectric material is defined as:

ZT = S2σelT/κt, (4)

where S is the Seebeck coefficient, σel is the electrical conductivity, T is the absolute temper-

ature, and κt = κel + κph is the thermal conductivity, which includes contributes from both

electrons (κel) and phonons (κph), respectively. In the coherent transport approximation,

i.e. in the absence of inelastic scattering processes, the figure of merit reduces to:

ZT = S2GelT/Kt, (5)

where Gel and Kt = Kel + Kph are the corresponding quantum conductance. The electron

quantum conductance Gel, the electron contribution to thermal conductance Kel and the

Seebeck coefficient S can be derived from the electronic transmission Tel by defining an

intermediate function Ln(µ, T ), of the chemical potential (µ) and the temperature: [3]

Ln(µ, T ) =
2

h

∫
dETel(E − µ)n

[
=
∂f(E, µ, T )

∂e

]
(6)

By using the standard kinetic relations we obtain:

Gel =
2e2

h
Tel(µ), (7)

Kel(µ, T ) =
1

T

[
L2(µ, T )− L1(µ, T )2

L0(µ, T )

]
, (8)

S(µ, T ) =
1

qT

[L1(µ, T )

L0(µ, T )

]
(9)

that enter in the ZT expression.
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