Supporting Information

Towards computational design of zeolite catalysts for CO₂ reduction

Aaron W. Thornton, David A. Winkler, Ming Liu, Maciej Haranczyk and Danielle F. Kennedy

Inverse-Ideal Adsorbed Solution Theory (I-IAST)

IAST is widely used for predicting the adsorbed concentration of multiple components given a feed (or gas phase) composition ^{1, 2}. In this work, the inverse is of interest, i.e. the prediction of the feed composition required to achieve a desired adsorbed composition. Beginning with Raoult's law for vapor-liquid equilibrium,

$$Py_i = P_i^o(\pi_i)x_i$$
 $i = 1, ..., N$

where *P* is the total feed equilibrium pressure, x_i is the adsorbed composition of component *i*, y_i is the feed composition of component *i*, π_i is the spreading pressure of component *i* in the mixture and P_i^o is the hypothetical pure component pressure of component *i* that yields the same spreading pressure found in the mixture. According to the Gibbs adsorption isotherm, the spreading is defined as follows,

$$\frac{\pi_i}{RT} = \int_0^{P_i^0} \frac{n_i^o(P)}{P} dP \qquad i = 1, \dots, N$$

where *R* is the universal gas constant, *T* is the temperature and n_i^o is the pure component capacity at pressure *P*. At the temperature and pressure ranges of interest, the pure component isotherms are satisfactorily modelled with the dual-site Henry and Langmuir model,

$$n_i^o(P) = k_{H,i}P + C_i \frac{k_{L,i}P}{1 + k_{L,i}P}$$
 $i = 1,...,N$

where $k_{H,i}$ is the Henry coefficient, $k_{L,i}$ is the Langmuir coefficient and C_i is the saturation capacity of Langmuir sites for component *i*. The form of the isotherm model is not important, however there must be a good fit with the simulated data, see Figure S3 that demonstrates a good fit. These variables are fitted to the isotherm data. For a 2-component system this leaves six remaining variables. Given the target adsorbed compositions, x_1 and x_2 , there are four variables to be determined, namely y_1, y_2, P_1^o and P_2^o . At equilibrium the spreading pressures for each component must be identical. Therefore the four remaining variables may be solved numerically given the following four constraints,

$$\pi_1 = \pi_2$$
$$Py_1 = P_1^o x_1$$
$$Py_2 = P_2^o x_2$$
$$y_1 + y_2 = 1$$

Finally, the total loading in the adsorbed phase is calculated as,

$$n_t = \left[\sum_{i=1}^N \frac{x_i}{n_i^o(P_i^o)}\right]^{-1}$$

Assuming complete conversion of adsorbed species, n_t is used to predict the quantity of product formation.

Table S1. Lennard-Jones parameters

adsorbate/adsorbent	$\epsilon/k_{\rm B}$ (K)	σ (Å)
Deeg et al. ³		
H ₂ - H ₂	36.733	2.958
H ₂ - Si	28.256	1.854
H ₂ - O _{zeo}	66.055	2.890
García-Pérez et al. ⁴		
C _{CO2} - C _{CO2}	28.129	2.76
C _{CO2} - O _{zeo}	50.2	2.7815
O _{CO2} - O _{CO2}	80.507	3.033
O _{CO2} - O _{zeo}	84.93	2.9195

Table S2. Coulombic charges

adsorbate/adsorbent	q (K)
García-Pérez et al. ⁴	
C _{CO2}	+0.6512
O _{CO2}	-0.3256
Si	+2.05
O _{zeo}	-1.025

Table S3. Top candidates with the strongest dual-adsorption properties in preparation for each product formation at 300 K and 1 bar.

Product	Top 5 Structure Names	Product Quantity (mol/m ³)	Change in Free Energy (kJ/mol)	Required H ₂ Feed Concentration (%)	Required CO ₂ Feed Concentration (%)
Formic Acid (H ₂ :CO ₂ = 1:1)	h8287217 STW FER OFF STI	41.56 34.61 28.16 30.06 29.89	-13.70 -15.63 -16.39 -15.15 -14.97	98.35 99.41 99.38 99.11 99.32	1.65 0.59 0.62 0.89 0.68
Formaldehyde (H ₂ :CO ₂ = 2:1)	h8287217 STW h8123219 FER SOF	21.00 17.40 17.20 14.16 16.67	-15.12 -17.20 -15.34 -18.15 -15.30	99.17 99.70 99.82 99.69 99.36	0.83 0.30 0.18 0.31 0.64
Methanol $(H_2:CO_2 = 3:1)$	STW h8123219 OSO FER OFF	11.62 11.50 11.08 9.46 10.12	-18.77 -17.32 -17.45 -19.91 -18.22	99.80 99.88 99.69 99.79 99.70	0.20 0.12 0.31 0.21 0.30
Methane $(H_2:CO_2 = 4:1)$	h8315435 h8287217 PUN STW h8123219	7.60 10.56 8.80 8.72 8.64	-26.61 -17.93 -21.08 -20.34 -19.30	99.9996 99.58 99.69 99.85 99.91	0.0004 0.42 0.31 0.15 0.09

Figure S1: Gravimetric CO₂ uptake versus structural properties.

Figure S2: Gravimetric H₂ uptake versus structural properties.

Figure S3: Fitted isotherm data using dual-site Henry and Languir model for CO₂ and H₂ up

to 20 bar within both IZA and hypothetical zeolite sets.

References

- (1) Chen, J.; Loo, L. S.; Wang, K., An Ideal Absorbed Solution Theory (IAST) Study of Adsorption Equilibria of Binary Mixtures of Methane and Ethane on a Templated Carbon. *J. Chem. Eng. Data* **2011**, *56* (4), 1209-1212.
- (2) O'Brien, J. A.; Myers, A. L., A Comprehensive Technique for Equilibrium Calculations in Adsorbed Mixtures: The Generalized Fastias Method. *Ind. Eng. Chem. Res.* **1988**, *27* (11), 2085-2092.
- (3) Deeg, K. S.; Gutiérrez-Sevillano, J. J.; Bueno-Pérez, R.; Parra, J. B.; Ania, C. O.; Doblaré, M.; Calero, S., Insights on the Molecular Mechanisms of Hydrogen Adsorption in Zeolites. *J. Phys. Chem. C* **2013**, *117* (27), 14374-14380.
- (4) García-Pérez, E.; Parra, J. B.; Ania, C. O.; García-Sánchez, A.; Baten, J. M.; Krishna, R.; Dubbeldam, D.; Calero, S., A Computational Study of CO2, N2, and CH4 Adsorption in Zeolites. *Adsorption* 2007, *13* (5-6), 469-476.