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Inverse-Ideal Adsorbed Solution Theory (I-IAST)

IAST is widely used for predicting the adsorbed concentration of multiple components given a feed (or gas phase)
composition 2. In this work, the inverse is of interest, i.e. the prediction of the feed composition required to achieve a

desired adsorbed composition. Beginning with Raoult’s law for vapor-liquid equilibrium,
Py =Plm)x,  i=Lo.N

where P is the total feed equilibrium pressure, x; is the adsorbed composition of component 7, y; is the feed composition of
component #, 11; is the spreading pressure of component i in the mixture and Py is the hypothetical pure component pressure
of component i that yields the same spreading pressure found in the mixture. According to the Gibbs adsorption isotherm,

the spreading is defined as follows,
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where R is the universal gas constant, 7 is the temperature and 7, is the pure component capacity at pressure P. At the
temperature and pressure ranges of interest, the pure component isotherms are satisfactorily modelled with the dual-site

Henry and Langmuir model,
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where ky ;is the Henry coefficient, 4, ; is the Langmuir coefficient and C; is the saturation capacity of Langmuir sites for
component i. The form of the isotherm model is not important, however there must be a good fit with the simulated data, see
Figure S3 that demonstrates a good fit. These variables are fitted to the isotherm data. For a 2-component system this leaves
six remaining variables. Given the target adsorbed compositions, x; and x;, there are four variables to be determined, namely
V1, V2, P/° and P,°. At equilibrium the spreading pressures for each component must be identical. Therefore the four

remaining variables may be solved numerically given the following four constraints,



=T,

Py, = Pix,
Py, =P3x,
yity,=1

Finally, the total loading in the adsorbed phase is calculated as,
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Assuming complete conversion of adsorbed species, 7, is used to predict the quantity of product formation.

Table S1. Lennard-Jones parameters

adsorbate/adsorbent e/kg (K) o (A)
Deeg et al. 3

H,-H, 36.733 2.958

H,-Si 28.256 1.854

H;- Oy 66.055 2.890

Garcia-Pérez et al. *

Cco2- Cco2 28.129 2.76
Cco2- Ozo 50.2 2.7815
Oco2 - Ocoz 80.507 3.033
Oco2 - Ozeo 84.93 2.9195

Table S2. Coulombic charges

adsorbate/adsorbent q (K)

Garcia-Pérez et al. *

Ccoz +0.6512
Ocoz -0.3256
Si +2.05

Ogeo -1.025






Table S3. Top candidates with the strongest dual-adsorption properties in preparation for each product formation at 300 K

and 1 bar.
Product Top 5 Product Change in Required H, Required CO,
Structure Quantity Free Energy Feed Feed
Names (mol/m?) (kJ/mol) Concentration Concentration
(%) (%)
Formic Acid h8287217 41.56 -13.70 98.35 1.65
(Hx:CO, =1:1) STW 34.61 -15.63 99.41 0.59
FER 28.16 -16.39 99.38 0.62
OFF 30.06 -15.15 99.11 0.89
STI 29.89 -14.97 99.32 0.68
Formaldehyde h8287217 21.00 -15.12 99.17 0.83
(H,:CO, =2:1) STW 17.40 -17.20 99.70 0.30
h8123219 17.20 -15.34 99.82 0.18
FER 14.16 -18.15 99.69 0.31
SOF 16.67 -15.30 99.36 0.64
Methanol STW 11.62 -18.77 99.80 0.20
(Hy:CO, =3:1) h8123219 11.50 -17.32 99.88 0.12
0SO 11.08 -17.45 99.69 0.31
FER 9.46 -19.91 99.79 0.21
OFF 10.12 -18.22 99.70 0.30
Methane h8315435 7.60 -26.61 99.9996 0.0004
(H,:CO, =4:1) h8287217 10.56 -17.93 99.58 0.42
PUN 8.80 -21.08 99.69 0.31
STW 8.72 -20.34 99.85 0.15
h8123219 8.64 -19.30 99.91 0.09
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Figure S1: Gravimetric CO, uptake versus structural properties.
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Figure S2: Gravimetric H; uptake versus structural properties.
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Figure S3: Fitted isotherm data using dual-site Henry and Languir model for CO, and H, up

to 20 bar within both IZA and hypothetical zeolite sets.
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