Supplementary Information

Facile Morphology-controllable Hydrothermal Synthesis and Color Tunable

Luminescence Properties of NaGd(MoO₄)₂: Eu³⁺, Tb³⁺ Microcrystals

Anming Li,^{a,b} Dekang Xu,^a Hao Lin,^a Shenghong Yang,^a Yuanzhi Shao,^a Yueli Zhang,^{*a} and Zhenqiang Chen^b

- ^{a.} State Key laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
 E-mail: stszyl@mail.sysu.edu.cn
- ^{b.} Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China

Fig. S1 TEM images, HRTEM images and SAED patterns of NaGd(MoO₄)₂ samples with the morphology of bipyramids and tetragonal plates: (a) and (b) bipyramids, (c) and (d) tetragonal plates.

Fig. S2 SEM images of the NaGd(MoO₄)₂ samples synthesized at different Na₂MoO₄/Re(NO₃)₃ molar ratios (4:1, 6:1 and 8:1) and different pH values (pH = 3.0, 4.0, 5.0 and 6.0).

Fig. S3 XRD patterns of the NaGd(MoO₄)₂ samples synthesized at different Na₂MoO₄/Re(NO₃)₃ molar ratios (4:1, 6:1 and 8:1) and different pH values (pH = 3.0, 4.0, 5.0 and 6.0).

Fig. S4 Excitation and emission spectra of $NaGd(MoO_4)_2$: 5% Tb³⁺ microplates.

Fig. S5 Spectral overlaps between emission spectrum of $NaGd(MoO_4)_2$: Tb³⁺ and excitation spectrum of $NaGd(MoO_4)_2$: Eu³⁺.

Fig. S6 Excitation and emission spectra of NaGd(MoO₄)₂: 1% Eu³⁺, 4% Tb³⁺ microplates.

Fig. S7 Emission spectra of NaGd(MoO₄)₂: Eu^{3+} , Tb^{3+} microplates with different doping concentrations excited by near-UV light at 380 nm.