Regiospecific Inverse Electron Demand Diels-Alder Reaction of 7-Methylcoumarin-4-azadienes

Kailas K. Sanap^a, and Shriniwas D. Samant^{b*}

^aDepartment of Chemistry, N.B. Mehta Science College, Bordi, Palghar 400 701, Maharashtra, India. ^bDepartment of Chemistry, Institute of Chemical Technology, Nathalal Parikh Marg, Matunga, Mumbai 400 019, Maharashtra, India.

Supporting Info

2-21

1. ¹H and ¹³C NMR Spectra

* Corresponding author. Tel.: + 91 22 3361 2606; fax: +91 22 2269 2102; E-mail address: samantsd@yahoo.com (S. D. Samant)

¹H NMR spectrum (CDCl₃, 300 MHz) of 7-methyl-coumarin-4-azadiene (1a)

¹H NMR (500 MHz) spectrum of **11a**

Ē Ή Me 0

(b) DQF-COSY zoomed spectrum of 11a (A)

Table S1 Diagonal peaks and their corresponding off-diagonal peaks of 11a (A)

Entry	Diagonal peak	Off-diagonal peaks	Entry	Diagonal Peak	Off-diagonal peaks
1	H ₄	$(H_4, H_{4a}) (H_4, H_{3a})$	10	H _{10b}	(H_{10b}, H_{4a})
2	H _{3a}	$(H_{3a}, H_4) (H_{3a}, H_{4a}) (H_{3a}, H_{2a}) (H_{3a}, H_{2b})$	11	H_{10}	(H ₁₀ , H ₉)
3	H _{3b}	$\begin{array}{c} (\mathrm{H}_{3b},\mathrm{H}_{2a})(\mathrm{H}_{3b},\mathrm{H}_{4a}) \\ (\mathrm{H}_{3b},\mathrm{H}_{2b}) \end{array}$	12	H ₃ ′	-
4	H _{4a}	$(H_{4a}, H_4) (H_{4a}, H_5) (H_{4a}, H_{10b})$	13	H ₈	(H ₈ , H ₇), (H ₈ , H ₉)
5	CH ₃	-	14	H ₆ ′	(H_6', H_5')
6	H _{2a}	$(H_{2a}, H_{3a}), (H_{2a}, H_{3b}) (H_{2a}, H_{2b})$	15	H9	(H ₉ , H ₈), (H ₉ , H ₁₀)
7	H _{2b}	$(H_{2b}, H_{3a}), (H_{2b}, H_{2a})$	16	H ₈ ′	-
8	NH	-	17	H ₇	(H_{7}, H_{8})
9	H ₅	(H_5, H_{4a})	18	H ₅ ′	(H ₅ ', H ₆ ')

¹H NMR (500 MHz) spectrum of **11a'**

(b) DQF-COSY zoomed spectrum of 11a' (B)

(c) DQF-COSY zoomed spectrum of 11a' (B)

Entry	Diagonal peak	Off-diagonal peaks	Entry	Diagonal peak	Off-diagonal peaks
1	H_{3a}	$(H_{3a}, H_4) (H_{3a}, H_{2a})$	10	H_{10b}	(H_{10b}, H_{4a})
2	H _{3b}	(H_{3b}, H_{2a})	11	H _{3'}	-
3	H_4	(H ₄ , H _{4a})	12	H ₇	(H ₇ , H ₈)
4	H _{4a}	$(H_{4a}, H_4) (H_{4a}, H_5) (H_{4a}, H_{10b})$	13	H9	(H ₉ , H ₈), (H ₉ , H ₁₀)
5	CH ₃	-	14	H_6'	(H ₆ ', H ₅ ')
6	H _{2a}	$(H_{2a}, H_{3b}), (H_{2a}, H_{2b})$	15	H_8	$(H_8, H_7), (H_8, H_9)$
7	H _{2b}	$(H_{2b}, H_{3a}), (H_{2b}, H_{2a})$	16	H ₁₀	(H_{10}, H_9)
8	NH	-	17	H_8'	-
9	H_5	(H ₅ , H _{4a})	18	H ₅ ′	(H ₅ ', H ₆ ')

Table S2 Diagonal peaks and their corresponding off-diagonal peaks of 11a' (B)

NOE spectrum of 11a'

¹³C NMR (75 MHz) spectrum of **12a**

¹H NMR (500 MHz) spectrum of **13a**

¹³C NMR (75 MHz) spectrum of **13a**

¹H NMR (500 MHz) spectrum of **13a'**

¹H NMR (300 MHz) spectrum of **14a**

¹³C NMR (75 MHz) spectrum of **14a'**

¹H NMR (300 MHz) spectrum of **16a'**

¹H NMR (300 MHz) spectrum of **17a**

¹³C NMR (75 MHz) spectrum of **17a**

¹H NMR (300 MHz) spectrum of **20a**

¹H NMR (300 MHz) spectrum of mixture of **20a** + **20a'**

