Supporting information

A novel, rapid and green method of phosphorylation under ultrasound irradiation and catalyst free conditions

Abdeslem Bouzina, Billel Belhani, Nour-eddine Aouf, Malika Berredjem*

Laboratory of Applied Organic Chemistry, Synthesis of biomolecules and molecular modelling Group, Sciences Faculty, Chemistry Department, Badji-Mokhtar - Annaba University, Box 12, 23000 Annaba, Algeria

^ACorresponding author.Email: mberredjem@yahoo.fr, malika.berredjem@univ-annaba.org

1. General
2. Typical experimental procedure for the phosphorylation
Scheme 1. phosphorylation of various structurally N-acylamines
Scheme 2. phosphorylation of various structurally N-acylaminoesters
Scheme 3. phosphorylation of various structurally N-acylaminoalcohols
<i>Scheme 4:</i> phosphorylation of various structurally N-acylsulfonamides <i>3</i>
3. Spectral Data4
¹ H NMR spectrum:Dimethyl (2-oxo-2-(phenylamino)ethyl)phosphonate
¹³ CNMRspectrum: Dimethyl (2-oxo-2-(phenylamino)ethyl)phosphonate
¹ H NMR spectrum:Dimethyl (2-(benzylamino)-2-oxoethyl)phosphonate
¹³ CNMRspectrum:Dimethyl (2-(benzylamino)-2-oxoethyl)phosphonate <i>10</i>
IR spectrum: Dimethyl (2-(benzylamino)-2-oxoethyl)phosphonate
¹ H NMR spectrum: (S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate11
¹³ C NMR spectrum:(S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate_12
³¹ P NMR spectrum: (S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate <i>12</i>
¹ H NMR spectrum: (S)-Diethyl (2-((1-hydroxy-3-methylbutan-2-yl)amino)-2-
oxoethyl)phosphonate
¹³ C NMR spectrum:(S)-Diethyl (2-((1-hydroxy-3-methylbutan-2-yl)amino)-2-
oxoethyl)phosphonate
³¹ P NMR spectrum:(S)-Diethyl (2-((1-hydroxy-3-methylbutan-2-yl)amino)-2
oxoethyl)phosphonate
¹ H NMR spectrum: N-phenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide14
¹ H NMR spectrum: N-3-fluorophenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide15
¹ H NMR spectrum:N-4-methoxyphenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide15

1. General:

All chemicals and solvents were purchased from common commercial sources and were used as received without any further purification. All reactions were monitored by TLC on silica Merck 60 F₂₅₄ percolated aluminum plates and were developed by spraying with ninhydrin solution. Column chromatography was performed with Merck silica gel (230-400 mesh). Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Brücker spectrometer at 250, 300 or 400 MHz. Chemical shifts is reported in δ units (ppm) with TMS as reference (δ 0.00). All coupling constants (*J*) are reported in Hertz. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Brücker at 60, 75 or 100 MHz. Chemical shifts are reported in δ units (ppm) relative to CDCl₃ (δ 77.0). Phosphorus nuclear magnetic resonance (³¹P NMR) spectra were recorded on a Brücker at 160 MHz. Chemical shifts are reported in δ units (ppm) relative to CDCl3 (δ 00.0). Infrared spectra were recorded on a SHIMADZU FT-IR 8000 spectrometer. Elemental analyses were recorded on a EURO E.A 3700. Melting points were recorded on a Büchi B-545 apparatus in open capillary tubes. Ultrasound assisted reactions were carried out using a FUNGILAB ultrasonic bath with a frequency of 40 kHz and a nominal power of 250 W. The reactions were carried out in an open glass tube (diameter: 25 mm; thickness: 1 mm; volume: 20 mL) at 90°.

2. Typical experimental procedure for the phosphorylation:

In a 10 ml round bottom flask taken *N*-acylsulfonamide (1 mmol) and triethylphosphite or trimethylphosphite (1 mmol) was added. Then reaction mixture was subjected to the ultrasonication for appropriate time. After completion of the reaction, as indicated by TLC, silica gel; dichloromethane:methanol (9,5:0.5).

Surplus reactants were removed by column chromatography eluted with dichloromethane

Scheme 1: Ultrasound assisted phosphorylation of various structurally N-acylamines.

Scheme 2: Ultrasound assisted phosphorylation of various structurally N-acylaminoesters.

Scheme 3: Ultrasound assisted phosphorylation of various structurally *N*-acylaminoalcohols.

Scheme 4: Ultrasound assisted phosphorylation of various structurally N-acylsulfonamides.

3. Spectral data:

Dimethyl (2-oxo-2-(phenylamino)ethyl)phosphonate (Table 1, Entry 1a)

Yellow oil. Yield 90%. $R_f = 0.42$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3280.62, 1674.25, 1510.15, 1319.00, 1231.25, 1039.67. $\delta_P(100 \text{ CDCl}_3)$ 27.4. δ_H (250 MHz, CDCl₃) 2.85 (s, 1H, CH₂-CO), 2.95 (s, 1H, CH₂-CO), 3.72 (s, 3H, CH₃-O), 3.78 (s, 3H, CH₃-O), 4.44 (s, 1H,NH), 7.30 (m, 5H, H-Ar). δ_C (62 MHz, CDCl₃) 33,34, 42.7, 52.1,126.9, 127.1, 136.2, 162.4.Anal. Calc. for C₁₀H₁₅NO₄P:C49.39, H 5.80, N 5.76. Found: C 49.35, H 5.85, N 5.75%. M=243.

Dimethyl (2-(benzylamino)-2-oxoethyl)phosphonate (Table 1, Entry 2a)

Yellow oil. Yield 89%. $R_f = 0.40$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹3284.73, 1660, 1555.42, 1314.19, 1247.25, 1034.23. $\delta_P(100 \text{ CDCl}_3)$ 27.6. δ_H (250 MHz, CDCl₃) 1.45 (s, 1H, CH₂-NH),1.54 (s, 1H, CH₂-NH),3.08 (s, 1H, CH₂-CO),3.13 (s, 1H, CH₂-CO),3.85 (2d, 6H, J_1 11.02, J_2 11.20, 2CH₃-O), 7.10 (m, 1H, H-Ar), 7.31 (t, 2H,J 7.02 H-Ar), 7.54 (d, 2H, J 8.32, H-Ar), 9.32 (s, 1H, NH-CO). δ_C (62 MHz, CDCl₃) 34.35,36.42, 53.55, 53.65,120.49, 124.63, 129.05, 133.3, 162.2.Anal. Calc. for C₁₁H₁₆NO₄P:C 51.36, H 6.27, N 5.45. Found: C 51.35, H 6.30, N 5.48%. M=257.

Dimethyl (2-((4-methoxyphenyl)amino)-2-oxoethyl)phosphonate (Table 1, Entry 3a)

Yellow oil. Yield 84%. $R_f = 0.48$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3274.05, 1684.16, 1498, 1234.15, 1046. δ_P (100 CDCl₃) 27.4. δ_H (250 MHz, CDCl₃) 2.85 (s, 1H, CH₂-CO), 2.97 (s, 1H, CH₂-CO), 3.64 (s, 3H, CH₃-O), 3.68 (s, 3H, CH₃-O), 3.74 (s, 3H, CH₃-O), 5.20 (s, 1H, NH), 7.21(m, 5H, H-Ar). δ_C (62 MHz, CDCl₃) 33, 35, 39, 44.16, 56.06, 125.4, 126.8, 137.3, 139.1, 164.2. δ_C (62 MHz, CDCl₃) 41,51.1, 51.7, 52.5, 120.9, 125.3, 140.4, 156.7, 164.2.Anal. Calc. for C₁₁H₁₆NO₅P: C 48.36, H 5.90, N 5.13. Found: C 48.29, H 5.85, N 5.15%. M=273.

Dimethyl (2-((3-fluorophenyl)amino)-2-oxoethyl)phosphonate (Table 1, Entry 4a)

Yellow oil. Yield 86%. $R_f = 0.43$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3290, 1684.14, 1512.98, 1239.34, 1067.25. $\delta_P(100 \text{ CDCl}_3)$ 27.4. δ_H (250 MHz, CDCl₃) 2.78 (s, 1H, CH₂-CO), 2.85 (s, 1H, CH₂-CO), 3.71 (s, 3H, CH₃-O), 3.79 (s, 3H, CH₃-O), 6.90 (m, 1H, H-Ar), 7.12-7.18 (m, 2H, H-Ar), 7.21 (m, 1H, H-Ar), 9.12 (s, 1H, NH-CO). δ_C (62 MHz, CDCl₃) 41.15,41.92, 50.93, 120.16, 121.8, 123.69,125.10, 134.41, 139.4, 161.28.Anal. Calc. for C₁₀H₁₃NO₄FP: C 45.99, H 5.02, N 5.36. Found: C 46.05, H 5.05, N 5.39%. M=261.

(S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-3-phenylpropanoate (Table 2, Entry 1b)

Oil. Yield 80%. $R_f = 0.57$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3264, 1745, 1663, 1245, 1161. δ_P (160 CDCl₃) 16.4. δ_H (400 MHz, CDCl₃)1.25 (2t, 6H, $J_17.01, J_25.30$ Hz, 2CH₃-P), 2.8 (s, 1H,CH₂-CO), 2.95(s, 1H,CH₂-CO), 3.05-3.25 (2dd, 2H, J_1 7.09, $J_25.45$ Hz, CH₂-Ph), 3.75 (s, 3H, CH₃-O), 4.15 (m, 4H, CH₂-O-P), 4.8 (m, 1H, *CH), 7.26 (d,1H, $J_{2.2}$, NH). δ_C (100 MHz, CDCl₃) 16.29, 16.31,34.41, 37.77, 52.35, 53.83, 62.76, 62.85, 127.19, 128.58, 129.26, 135.95, 161, 173.Anal. Calc. for C₁₆H₂₄NO₆P:C 53.78, H 6.77, N 3.92. Found: C 53.75, H 6.82, N 3.90%. M=357.

(S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate (Table 2, Entry 2b)

Oil. Yield 82%. $R_f = 0.6$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3274, 1743, 1674, 1245, 1161. δ_P (160 CDCl₃) 16.33. δ_H (400 MHz, CDCl₃)0.95 (2d, 6H, *J*8.01 Hz, 2CH₃-iBu), 1.3 (t, 6H, *J* 7.05 Hz, CH₃-CH₂O), 1.5-1.7 (m, 3H, CH-iBu, CH₂-iBu), 2.82 (d, 1H, CH₂-CO), 2.95 (s, 1H, CH₂-CO), 3.7 (s, 3H, CH₃-O), 4.1 (m, 4H, CH₂-O-P), 4.54 (m, 1H, *CH), 7.1 (d, 1H, *J*7.81, NH). δ_C (100 MHz, CDCl₃) 16.27,16.31,21.6, 22.79, 24.65, 34.23, 40.96, 51.05, 52.19, 62.5, 62.50, 163.95, 173.Anal. Calc. for C₁₃H₂₆NO₆P: C 41.29, H 8.11, N 4.33. Found: C 41.25, H 8.19, N 4.25%. M=323.

(S)-methyl 2-(2-(diethoxyphosphoryl)acetamido)-3-methylbutanoate (Table 2, Entry 3b)

Oil. Yield 88%. $R_f = 0.67$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3280.69, 1731, 1651, 1250, 1155. δ_P (160 CDCl₃) 16.31. δ_H (400 MHz, CDCl₃)0.95 (2d, 6H, *J* 6.90 Hz, 2CH₃-iPr), 1.4 (t, 6H, *J* 7.07 Hz,CH₃-CH₂), 2.2 (m, 1H, CH-iPr), 2.83 (s, 1H, CH₂-CO), 2.98 (d, 1H, CH₂-CO), 3.75 (s, 3H, CH₃-O), 4.15 (m, 4H, 2CH₂-O), 4.5 (m, 1H,*CH), 7.15 (d,1H, *J*8.1Hz, NH). δ_C (100 MHz, CDCl₃) 16.21, 16.23,18.50, 19.25, 29.71, 34.23, 50.96, 52, 62.61, 62.62, 163.8, 171.9. Anal. Calc. for C₁₂H₂₄NO₆P: C 46.60, H 7.82, N 4.53. Found: C 46.55, H 7.72, N 4.61%. M=309.

(S)-Diethyl (2-((1-hydroxy-4-methylpentan-2-yl)amino)-2-oxoethyl)phosphonate (Table 3, Entry 1c)

Oil. Yield 79%. $R_f = 0.62$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3490, 3180, 1650, 1230, 1112. δ_P (160 CDCl₃) 16.33. δ_H (400 MHz, CDCl₃)0.98 (2d, 6H, J2.75 Hz, 2CH₃-iBu), 1.4 (m,

8H,2CH₃-CH₂,CH₂-iBu), 1.65 (m, 1H, CH-iBu), 2.45 (s, 1H, OH), 2.85 (s, 1H, CH₂-CO), 2.99 (s, 1H, CH₂-CO), 3.50 (dd, 1H, *J* 5.37 Hz, CH₂-OH), 3.75 (dd, 1H, *J* 3.37 Hz, CH₂-OH), 4.2 (m, 5H,2CH₂-O, *CH), 6.8 (d, 1H, *J* 7.89 Hz, NH).δ_C (100 MHz, CDCl₃) 16.3, 16.35, 21.98, 23.12, 24.74, 35, 39.86, 50.75, 62.69, 62.74, 65.76, 164.79.Anal. Calc. for C₁₂H₂₆NO₅P:C 41.29, H 8.11, N 4.33. Found: C 41.25, H 8.19, N 4.25%. M=295.

(S)-Diethyl (2-((1-hydroxy-3-phenylpropan-2-yl)amino)-2-oxoethyl)phosphonate (Table 3, Entry 2c)

Oil. Yield 75%. $R_f = 0.55$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3880, 3580, 3190, 1650, 1296, 1112. δ_P (160 CDCl₃) 16.36. δ_H (400 MHz, CDCl₃)1.4 (t, 6H, *J* 7.18 Hz, 2CH₃-CH₂), 2.82 (m, 4H, CH₂-CO,CH₂-Ph), 3.05 (s, 1H, OH), 3.55 (dd, 1H, *J* 4.68 Hz, CH₂-OH), 3.75 (dd, 1H, *J* 3.47 Hz, CH₂-OH), 4.2 (m, 5H, CH₃-CH₂, *CH), 7.05 (d, 1H, *J* 8.07, NH), 7.3 (m, 5H, H-Ar). δ_C (100MHz, CDCl₃) 16.3, 16.34, 35.48, 38.54, 52.74, 53.80, 62.80, 127.22, 128.68, 129.55, 135.98, 164.79.Anal. Calc. for C₁₂H₂₆NO₅P: C 54.71, H 7.35, N 4.25. Found: C 54.65, H 7.30, N 4.29%. M=329.

(S)-Diethyl (2-((1-hydroxy-3-methylbutan-2-yl)amino)-2-oxoethyl)phosphonate (Table 3, Entry 3c)

Oil. Yield 83%. $R_f = 0.45$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹3484, 3298, 1650, 1240, 1151. $\delta_P(160 \text{ CDCl}_3)$ 16.34. δ_H (400 MHz, CDCl₃)0.94 (2d, 6H, *J* 6.56 Hz, 2CH₃-iPr), 1.05 (t, 3H, *J* 6.6 Hz, CH₃-CH₂), 1.25 (t, 3H, *J* 5.24 Hz, CH₃-CH₂), 1.95 (m, 1H, CH-iPr), 2.88 (d, 1H, CH₂-CO), 2.97 (d, 1H, CH₂-CO),3.55-3.75 (m, 2H, CH₂-OH), 4.15 (m, 4H, 2CH₂-O), 4.16 (m, 1H, *CH), 6.80 (d, 1H, *J* 9.64 Hz, NH). δ_C (100 MHz, CDCl₃) 16.21, 16.23, 18.14, 19.12, 28.98, 34.99, 50.20, 62.22, 62.30, 64, 163.79.Anal. Calc. for C₁₁H₂₄NO₅P: C 46.97, H 8.60, N 4.98. Found: C 46.92, H 8.67, N 4.94%. M=281.

N-benzyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide (Table 4, Entry 1d)

Yellow oil. Yield85%. $R_f = 0.42$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3350, 1725, 1658, 1364, 1249,1159. δ_P (160 CDCl₃) 27.9. δ_H (400 MHz, CDCl₃) 2.95 (s, 1H, CH₂-CO), 3.09 (s, 1H, CH₂-CO), 3.75 (s, 1H, CH₂-Ar), 3.66 (s, 1H, CH₂-Ar), 3.82 (2s, 6H, 2CH₃-O), 7.25 (m, 5H, H-Ar),8.82 (s, 1H, NH-CO). δ_C (100 MHz, CDCl₃)35, 41.2, 52, 126.6, 126.9, 128.6, 141.2, 165.1.Anal. Calc. for C₁₁H₁₇N₂O₆SP: C 41.25, H 5.35, N 8.75. Found: C 41.35, H 5.25, N 8.85%. M=336.

N-phenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide (Table 4, Entry 2d)

Yellow oil. Yield 90%. $R_f = 0.44$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹3320, 1715, 1610, 1361, 1234, 1149. δ_P (160 CDCl₃) 27.3. δ_H (400 MHz, CDCl₃) 2.97 (s, 1H, CH₂-CO), 3.02 (s, 1H, CH₂-CO), 3.82 (2s, 6H, 2CH₃-O), 6.90 (m,1H, H-Ar),7.12-7.50 (2m, 4H, H-Ar),9.32 (s, 1H, NH-CO). δ_C (100MHz, CDCl₃) 36,52, 120.9, 125.3, 129.6, 139.2, 160.4.Anal. Calc. for C₁₀H₁₅N₂O₆SP:C 37.26, H 4.96, N 8.69. Found: C 37.35, H 4.85, N 8.75%. M=322.

N-cyclohexyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide (Table 4, Entry 3d)

Yellow oil. Yield 80%. $R_f = 0.50 (CH_2Cl_2/MeOH:95/05)$. v_{max} (KBr)/cm⁻¹ 3269, 1700, 1614, 1368,1249, 1150. δ_P (100 CDCl_3) 29.8. δ_H (250 MHz, CDCl_3) 1.28 (m, 4H, 2CH_2-cyc), 1.35 (m, 2H, CH_2-cyc), 1.55 (m,2H, CH_2-cyc), 8.5 (m, 2H, CH_2-cyc), 2.80 (s, 1H, CH_2-CO), 2.91 (s, 1H, CH_2-CO), 3.66 (m, 1H, CH-NH), 3.91 (2s, 6H, 2CH_3-O), 8.65 (s, 1H, NH-CO). δ_C (62 MHz, CDCl_3)24, 25, 32, 42.9, 43, 52, 170. Anal. Calc. for $C_{10}H_{21}N_2O_6SP$:C 36.58, H 3.45, N 8.53. Found: C 36.65, H 3.25, N 8.85%. M=328.

N-3-fluorophenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide (Table 4, Entry 4d) Yellow oil. Yield 90%. $R_f = 0.45$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3368, 1720, 1650, 1364,1245,1159.δ_P(100 CDCl₃) 28.4. δ_{H} (250 MHz, CDCl₃) 3.03 (s, 1H, CH₂-CO),3.11 (s, 1H, CH₂-CO),3.92 (2s, 6H, 2CH₃-O),6.9 (m, 1H, H-Ar), 7.35 (m, 2H, H-Ar),7.65 (m, 1H, H-Ar),9.02 (s, 1H, NH-CO). δ_{C} (62 MHz, CDCl₃) 41.2,52, 105.9, 110.4, 115, 129.6, 139.4, 163, 170.Anal. Calc. for C₁₀H₁₄N₂O₆FSP:C 35.30, H 4.15, N 8.26. Found: C 35.45, H 4.05, N 8.35%. M=340.

N-4-methoxyphenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide (Table 4, Entry 5d)

Yellow oil. Yield 88%. $R_f = 0.48$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3310, 1714, 1590, 1364,1260, 1151. δ_P (100 CDCl₃) 28.1. δ_H (250 MHz, CDCl₃) 2.94 (s, 1H, CH₂-CO),2.99 (s, 1H, CH₂-CO),3.90 (3s, 9H, 3CH₃-O),6.9-7.35 (2d, 4H, $J_1=J_2$ 7.36, H-Ar),8.82 (s, 1H, NH-CO). δ_C (62 MHz, CDCl₃) 41.2, 52, 105.9, 110.4, 115, 129.6, 139.4, 163, 170.Anal. Calc. for C₁₁H₁₇N₂O₇SP:C 37.50, H 4.85, N 7.96. Found: C 37.55, H 4.98, N 7.85%. M=352.

N-1-phenylethyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide (Table 4, Entry 6d)

Yellow oil. Yield 75%. $R_f = 0.42$ (CH₂Cl₂/MeOH:95/05). v_{max} (KBr)/cm⁻¹ 3260, 1710, 1612, 1361,1250, 1158. δ_P (160 CDCl₃) 27.9. δ_H (400 MHz, CDCl₃) 1.28 (d, 3H, *J* 6.93 Hz, CH₃), 2.92 (s, 1H, CH₂-CO), 3.01 (s, 1H, CH₂-CO), 3.80 (2s, 6H, 2CH₃-O), 4.35 (m, 1H, CH*),5.55 (d, 1H, *J*6.20Hz, NH-CH),7.50 (m, 5H, H-Ar),8.62 (s, 1H, NH-CO). δ_C (100 MHz, CDCl₃) 19,41, 42, 46, 52, 126.5, 128.1, 143.6, 170.Anal. Calc. for C₁₂H₁₉N₂O₆SP:C 41.14, H 4.15, N 8.00. Found: C 41.25, H 4.19, N 8.05%. M=350.

¹H NMR spectrum: Dimethyl (2-oxo-2-(phenylamino)ethyl)phosphonate

¹³C NMRspectrum: Dimethyl (2-oxo-2-(phenylamino)ethyl)phosphonate

¹H NMR spectrum:Dimethyl (2-(benzylamino)-2-oxoethyl)phosphonate

¹³C NMRspectrum:Dimethyl (2-(benzylamino)-2-oxoethyl)phosphonate

IR spectrum:Dimethyl (2-oxo-2-(benzylamino)ethyl)phosphonate

¹H NMR spectrum: (S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate

¹³C NMR spectrum: (S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate

³¹P NMR spectrum: (S)-Methyl 2-(2-(diethoxyphosphoryl)acetamido)-4-methylpentanoate

1H NMR spectrum: (S)-Diethyl (2-((1-hydroxy-4-methylpentan-2-yl)amino)-2oxoethyl)phosphonate

¹³C NMR spectrum: (S)-Diethyl (2-((1-hydroxy-4-methylpentan-2-yl)amino)-2oxoethyl)phosphonate

³¹P NMR spectrum: (S)-Diethyl (2-((1-hydroxy-4-methylpentan-2-yl)amino)-2oxoethyl)phosphonate

¹H NMR spectrum: N-phenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide

¹H NMR spectrum: N-3-fluorophenyl-(1-(2-dimethoxyphosphoryl) acetamide) sulfamide

