SUPPLEMENTARY INFORMATION

The first registration of a green liquid-phase chemiluminescence of the divalent Eu^{2+*} ion in interaction of β-diketonate complexes Eu(acac)₃·H₂O, Eu(dpm)₃, Eu(fod)₃ and Eu(CH₃COO)₃·6H₂O with Buⁱ₂AlH in THF with the participation of oxygen

Ramil G. Bulgakov, Svetlana M. Eliseeva and Dim I. Galimov

Experimental section:

The β -diketonate complexes Eu(acac)₃·H₂O, Eu(dpm)₃, Eu(fod)₃, hexahydrate and Eu(CH₃COO)₃·6H₂O were used as received from Aldrich Chemical Co. Dialkylhydride Buⁱ₂AlH, 73% solution in toluene was distilled according to ^{S1}. THF was distilled under argon from sodium benzophenone ketyl before use. Argon and air were purified as in ^{S1}. The CL, PL spectra and decay lifetimes were recorded on a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer (model FL-3-22) equipped with double-grating monochromators, dual lamphousing with 450W Xenon lamp and pulsed solid state laser-diode NanoLED, photomultiplier tube detector (Hamamatsu R928 PMT). Emission and excitation spectra were corrected for source intensity (lamp and grating) and emission spectral response (detector and grating) by standard instrument correction, provided in the instrument software. Lifetime measurements were carried out using for excitation the Xenon flash lamp (500 Hz repetition rate) in the case of Eu³⁺ and 370 nm NanoLED (1 MHz repetition rate) in the case of Eu²⁺. PL quantum yields (ϕ_{Pl}) of the Eu²⁺ complexes in THF were determined by ratio value of integrated area under corrected luminescence spectra with using 2.0·10⁻⁵ M solution of anthracene (scintillation pure grade) in EtOH as a reference sample ($\phi_{PL} = 0.28$).^{S2} As a result, the PL quantum yields were calculated by Eq.1.

$$\frac{\phi_x}{\phi_{st}} = \frac{A_{st} \cdot n_x^2 \cdot D_x}{A_x \cdot n_{st}^2 \cdot D_{st}}$$
(1)

where ϕ_{st} and ϕ_x are the PL quantum yields of the sample and standard; A_x and A_{st} are absorbances at the excitation wavelength for the sample and standard; n_x and n_{st} are the refractive indexes of solvents: 1.4050 for THF and 1.3611 for EtOH;^{S3} D_x and D_{st} are the areas under the PL spectra of the sample and standard. CL quantum yields (in Einstein·mol⁻¹) were calculated based on the ratio $S/[Me_2CHC(H)=O]$, where S is a light sum (in photon·mL⁻¹), defined as the integrated area under the CL kinetic curves in coordinates CL intensity (I_{cL} , in photon·s⁻¹·mL⁻¹) versus time (s), $[Me_2CHC(H)=O] \approx 4 \cdot 10^{-4}$ M is a concentration of isobutyric aldehyde, which is formed by complete oxidation of Buⁱ₂AlH by oxygen and calculated using data.^{S4}

The kinetics of $Eu^{3+} \rightarrow Eu^{2+}$ reduction was monitored by an increase in the PL intensity of Eu^{2+} at 560 nm (λ_{exc} = 445 nm) with an instrument Fluorolog-3 spectrofluorimeter using a time mode «Kinetics Acquisition». The integration time for all experiments was 10 s. The kinetics of CL was carried out in the original chemiluminometer^{S4} in cylindrical Pyrex CL-cell (reactor) closed with a penicillin cap. As a light detector was photomultiplier tube "FEU-39". Calibration of the chemiluminometer was carried out as in ^{S5}.

In a typical experiment, transparent the CL-cell was charged with Eu³⁺ complex (0.02 mmol), purged with argon for 20 min for removal of O₂ from the gas space, and then 2 ml freshly distilled THF, saturated by air at stirring, was injected by syringe. After that, avoiding falling into the chemiluminescent chamber light of day, Buⁱ₂AlH (0.2 mL, 0.8 mmol) was injected by syringe through the penicillin stopper with continuous stirring. In separate experiments, gaseous products (BuⁱH and H₂) contained in the reaction solution and the gaseous phase above that were analyzed by GLC according to ^{\$1,52}. To explore the possibility of CL generating under anaerobic conditions, the reaction was carried out in a quartz reactor made up with two

cylindrical ampoule-like parts where the solutions of Eu(fod)3 and Buⁱ2AlH were placed. The solutions were mixed after oxygen degassing by three freeze–evacuate–thaw cycles at 300 K in a CL chamber. Isolation of Eu²⁺ complex from the yellow-green reaction solution was effected according to the modified method of ⁵⁶ by removing excess THF solvent with vacuum (1 torr) and heating (75°C). At achievement of this temperature, THF was completely removed with formation of the orange precipitate and small volume of liquid (excess Buⁱ₂AlH and its oxidation products). Then, reactor was cooled under argon and 2 ml of hexane was added to remove excess Buⁱ₂AlH and its conversion products. This operation was performed 5 times. As a result, dark yellow Eu²⁺ complexes were isolated. The molecular formulas of the resulting Eu²⁺ complexes were determined using complexometric titration, elemental analysis, and IR spectroscopy. The UV-visible absorption spectra were recorded by spectrophotometer Perkin Elmer Lambda 750 instrument in argon atmosphere using 1 cm quartz cells fitted with hermetic stoppers.

IR spectra were recorded in solid state (KBr tablet) using «Bruker Vertex 70V» instrument. Elemental analysis of Eu^{2+} complexes were performed in the elemental analyzer CHNS with an error: ±0.3%.

Spectral and other characteristics of the complexes obtained are presented below.

Eu(fod)₂·(**THF)**₂. Yield (19.2 mg, 44.8 %) Found (%): Eu, 17.7; F, 31.2; C, 37.8; H, 4.2; O, 9.1. Calculated for EuC₂₈H₃₆F₁₄O₆ (%): Eu, 17.2; F, 30.0; C, 37.9; H, 4.1; O, 10.80. IR absorptions (KBr), v_{max}/cm^{-1} : 840 (C-O, THF), 1034 (C-O, THF), 1228 (C-F), 1380-1425 (-C(CH₃)₃), 1460 (-CH₂-), 1702 (-CH₂-, -CH₃), 1735 (C=0), 1804 (-CF₂-CH-C=0).

Eu(dpm)₂·(**THF)**₂. Yield (15.3 mg, 31.3 %) Found (%): Eu, 22.9; C, 54.3; H, 8.7; O, 14.1. Calculated for EuC₃₀H₅₄O₆ (%): Eu, 23.0; C, 54.4; H, 8.1; O, 14.5. IR absorptions (KBr), v_{max}/cm⁻¹: 798 (C-O, THF), 1029 (C-O, THF), 1406 (-CH₂-), 1467 (-CH₂-), 1528 (-CH=), 1745 (C=O), 2873 (-CH₂-), 2929 (-CH₂-), 2959 (-CH=).

Eu(acac)₂·(**THF)**₂. Yield (4.1 mg, 16.4 %) Found (%): Eu, 30.7; C, 43.6; H, 6.5; O - 19.2. Calculated for EuC₁₈H₃₀O₆ (%): Eu, 30.8; C, 43.7; H, 6.1; O, 19.4. IR absorptions (KBr), v_{max}/cm^{-1} : 797 (C-O, THF), 1026 (C-O, THF), 1386 (-CH₂-), 1461 (-CH₃), 1528 (-CH), 1745 (C=O), 2855 (-CH₂-), 2925 (CH₃), 2956 (-CH=).

Eu(CH₃COO)₂·(THF)₂. Yield (6.3 mg, 39.9 %) Found (%): Eu, 36.9; C, 35.1; H, 5.6; O, 22.4. Calculated for EuC₁₂H₂₂O₆ (%): Eu, 36.7; C, 34.8; H, 5.3; O, 23.2. IR absorptions (KBr), v_{max}/cm⁻¹: 789 (C-O, THF), 1030 (C-O, THF), 1386 (-CH₂-), 1423 (CH₂), 1745 (C=0), 2855 (-CH₂-), 2925 (-CH₃).

- S1. R. G. Bulgakov; S.P. Kuleshov; A.N. Zuzlov, I.R. Mullagaleev, L.M. Khalilov, U.M. Dzhemilev, *J. Organometall. Chem.*, 2001, **636**, 56-62.
- S2. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishic and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850-9860.
- S3. A. J. Gordon, R. A. Ford, *The Chemist's companion*, John Wiley and sons, New York-London-Sydney-Toronto, 1972.
- S4. R. G. Bulgakov, V. P. Kazakov, G. A. Tolstikov, *Chemiluminescence of Organometallic Compounds*, Nauka, Moscow, 1989.
- S5. R.G. Bulgakov, S.M. Eliseeva, D.I. Galimov, J. Lumin., 2013, **136**, 95-99.

S6. R. G. Bulgakov, S. M. Eliseeva, D.I. Galimov, Russ. Chem. Bull., Int. Ed., 2013, 62, 2345-2348.

Figure S1. PL spectra of isolated complexes $EuL_2 \cdot (THF)_2$ in $CHCl_3 - CDCl_3$ (after NMR measurements). 1 – $Eu(acac)_2 \cdot (THF)_2$, 4.84 $\cdot 10^{-4}$ M; 2 – $Eu(CH_3COO)_2 \cdot (THF)_2$, 2.64 $\cdot 10^{-4}$ M; 3 – $Eu(dpm)_2 \cdot (THF)_2$, 3.5 $\cdot 10^{-5}$ M.

Figure S2. CL kinetics of BGCL (1) and at interaction in system $Eu(acac)_3 \cdot H_2O$ -THF- $Bu_3^iAl-O_2$ at 300 K (2). CL were measured with chemiluminometer. $[Eu^{3+}]_0 = 1 \cdot 10^{-2}$ M, $[Bu_3^iAl]_0 = 4 \cdot 10^{-1}$ M, V(THF) = 2.0 mL.

Figure S3. PL(1) and CL (2) spectra of solutions in reaction of the Eu(acac)₃·H₂O and Buⁱ₃Al in THF at 300 K. [Eu(acac)₃·H₂O]₀ = 10^{-2} M, [Buⁱ₃Al]₀ = $4 \cdot 10^{-1}$ M, V(THF) = 2 ml.

Figure S4. Reduction kinetics of Eu^{3+} to Eu^{2+} in the reaction $Eu(acac)_3 \cdot H_2O$ and Bu^i_3AI in THF. [$Eu(acac)_3 \cdot H_2O]_0 = 10^{-2} \text{ M}$, [Bu^i_3AI]_0 = $4 \cdot 10^{-1} \text{ M}$, V(THF) = 2 ml.

Figure S5. Spectral overlap of the absorption spectra (red line) of the Eu²⁺ ion (10⁻² M) and phosphorescence spectrum (black line) of isobutyric aldehyde ${}^{3}Pr^{i}C(H)=O^{*}$ (5·10⁻⁴ M). 1-4 – absorption spectra of the reaction solutions, obtained after interaction of Buⁱ₂AlH with Eu(CH₃COO)₃·6H₂O (1), Eu(acac)₃·H₂O (2), Eu(dpm)₃ (3), and Eu(fod)₃ (4) in THF; 5 – phosphorescence spectrum of isobutyric aldehyde ${}^{3}Pr^{i}C(H)=O^{*}$ (5·10⁻⁴ M) in THF at 77 K. 6 – BGCL spectrum. [Buⁱ₂AlH]₀ = 4·10⁻¹ M, V(THF) = 2.0 mL, T = 300 K.

Figure S6. Energy level diagram of enhanced green CL due to energy transfer from triplet excited isobutyric aldehyde ${}^{3}Pr^{i}C(H)=O^{*}$ to the Eu²⁺ ion.

