Supplementary Material

Synthesis of manganese dioxide/iron oxide/graphene oxide magnetic

nanocomposites for hexavalent chromium removal

Yan Liu^a, Chao Luo^{a,b}, Guijia Cui^a, Shiqiang Yan^{*, a}

^a College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR

China

^b CNOOC Tianjin Chemical Research & Design Institute, Tianjin 30000, P R China

^{*} Corresponding author. Tel.:+86 931 8912582; Fax: +86 931 8912582 E-mail address:yansq@lzu.edu.cn

1. Characterization of different materials

Fig. S1 $\rm N_2$ adsorption-desorption isotherm of Fe_3O_4/GO and MnO_2/Fe_3O_4/GO.

Fig. S2 The color of $MnO_2/Fe_3O_4/RGO$ (pH = 7) (B), $MnO_2/Fe_3O_4/RGO$ (pH = 5) (A)

and $MnO_2/Fe_3O_4/RGO (pH = 1) (C)$.

Fig. S3 The color of solution after reaction: initial synthesis solution pH = 7.0 (a)

and pH = 1.0 (b).

2. Adsorption Isotherms

Fig. S4 Langmuir adsorption isotherm plots for chromium adsorption onto $MnO_2/Fe_3O_4/GO$ at different pH values.

Fig. S5 Equilibrium parameter of chromium ions adsorbed onto $MnO_2/Fe_3O_4/GO$ at different pH values

•

Fig. S6 Freundlich adsorption isotherm plots for chromium adsorption onto $MnO_2/Fe_3O_4/GO$ at different pH values.

3. Adsorption Kinetics

Fig. S7 Plot of the pseudo-first-order kinetic model for chromium on $MnO_2/Fe_3O_4/GO$ at different temperatures and pH values.

Fig. S8 Plot of the second-order kinetic model for chromium on $MnO_2/Fe_3O_4/GO$ at different temperatures and pH values.

Fig. S9 Plot of the pseudo-second-order kinetic model for chromium on $MnO_2/Fe_3O_4/GO$ at different temperatures and pH values.