Supporting Information

Palladium-Catalyzed Direct ortho-Sulfonylation of
Azobenzenes with Arylsulfonyl Chlorides via $\mathbf{C}-\mathbf{H}$
Activation
Chengcai Xia, ${ }^{\text {a, }}$ C Zhenjiang Wei, ${ }^{\text {c }}$ Chao Shen, ${ }^{\text {b }}$ Jun Xu, ${ }^{\text {b }}$ Yong Yang ${ }^{\mathrm{b}}$, Weike Su ${ }^{\text {a }}$ and Pengfei Zhang ${ }^{\text {b,a* }}$
${ }^{\text {a }}$ Pharmacy College, Zhejiang University of Technologe, Hangzhou 310014, China${ }^{\text {b }}$ College of Material, Chemistry and Chemical Engineering, Hangzhou NormalUniversity, Hangzhou 310036 China
${ }^{\text {c }}$ Pharmacy College, Taishan Medical University, Tai'an 271016, China
Table of Contents
1.General Information 2
2. Experimental Section 2
3.Characterization data of the products 2
4.1H and 13C NMR spectra of the products 12
5.X-ray Crystal Data for catalyst 3b 39
6.References 41

[^0]
1. General Information

All the chemicals were obtained commercially and used without any prior purification. ${ }^{1}$ HNMR spectra were recorded on a Bruker AvanceII 500 spectrometer. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether $\left(60-90^{\circ} \mathrm{C}\right)$ and ethyl acetate. unless otherwise noted. All compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRGC- HRMS, which are consistent with those reported in the literature.

2. Experimental Section

General procedure for preparation of azoxybenzenes

All of the azo-compounds were prepared from arylamines, according to the literature. ${ }^{[1]} \mathrm{Mix} \mathrm{CuBr}(4.2 \mathrm{mg}, 0.03 \mathrm{mmol})$, pyridine $(8.7 \mathrm{mg}, 0.09 \mathrm{mmol})$, arylamines ($93 \mathrm{mg}, 1 \mathrm{mmol}$) in toluene (4 ml) under air (1 atm). The reaction mixture was vigorously stirred at $60^{\circ} \mathrm{C}$ for 20 h . After cooling down to room temperature and concentrating in vacuum, the residue was purified by flash chromatography on a short silica gel (eluent: petroleum ether) to afford azo-compound; yellow solid;

General procedure for preparation ortho-sulfonylated azobenzenes

Mix azoic compound (0.5equiv), benzene sulfonyl chloride (0.6equiv), $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), 4A MS (100 mg) in 1,4-dioxane (2 ml) under air. The reaction mixture was vigorously stirred at $130{ }^{\circ} \mathrm{C}$ for 12 h . After
cooling down to room temperature and concentrating in vacuum, the residue was purified by flash chromatography on a short silica gel to afford the protect.

3. Characterization data of the products

Diazene. (1a) ${ }^{1}$

(E)-1,2-di-p-tolyldiazene.

Obtained as a yellow solid in90\% yield; M.p. $138-140{ }^{\circ} \mathrm{C}$..
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.42$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.85$, 141.22, 129.73, 122.75, 21.50.
HRMS (ESI +): Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$211.123, Found 211.1032.

(E)-1,2-di-m-tolyldiazene

Obtained as a yellow solid in 87% yield; M.p. $123-124^{\circ} \mathrm{C}$.
$1 \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~s}, 4 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.42(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.87$, 139.00, 131.75, 128.95, 122.97, 120.54, 21.43. HRMS (ESI+): Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$ 211.123, Found 211.1034.

(E)-1,2-bis(4-ethoxyphenyl)diazene.

Obtained as a yellow solid in 92% yield; M.p. $150-151{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.82(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.10(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.01$, 146.93, 124.36, 114.66, 63.79, 14.80.HRMS (ESI+): Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: $[\mathrm{M}+\mathrm{H}]^{+}$211.123, Found 211.1032.
(E)-1,2-bis(3-methoxyphenyl)diazene.

Obtained as a yellow solid in 85% yield; M.p. $70-71^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (ddd, $J=7.8,1.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{ddd}, J=8.2,2.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.31, 152.79, 128.76, 116.85, 116.14, 104.69, 54.46. HRMS (ESI+): Calculated for
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$243.1128, Found 243.0686.
(E)-1-(3-methoxyphenyl)-2-phenyldiazene.

Obtained as a yellow solid in 60% yield; M.p. $30-31^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.07-7.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.34,153.91,152.61,131.05$, 129.80, 129.11, 122.89, 117.83, 117.14, 105.74, 55.50. HRMS (ESI+): Calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{1}:[\mathrm{M}+\mathrm{H}]^{+}$213.1022, Found 213.061.
(E)-1-(3-methoxyphenyl)-2-(m-tolyl)diazene.

Obtained as a yellow liquid in 58% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{ddd}, J=7.8,1.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41$ (dd, $J=16.4,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.03 (ddd, $J=8.2,2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.32,153.94,152.68,138.99,131.83,129.76,128.91,122.93$, 120.55, 117.72, 117.04, 105.69, 55.47, 21.37. HRMS (ESI+): Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{1}:[\mathrm{M}+\mathrm{H}]^{+}$227.1179, Found 227.075.
(E)-1-phenyl-2-(2-tosylphenyl)diazene (3a)

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40$ (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.65$ (dtd, $J=22.0,7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (dd, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.72, 149.07, 143.91, 139.43, 138.88, 134.35, 131.97, 130.54, 129.35, 129.29, 129.11, 128.20, 123.77, 116.90, 21.51. HRMS (ESI+): Calculated for C23H18N2O3S: $[\mathrm{M}+\mathrm{H}]+$ 336.0916, Found 337.0989.
(E)-1-(2-((4-bromophenyl)sulfonyl)phenyl)-2-phenyldiazene (3b)

NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.52-7.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.68,148.96,141.34,138.17$, 134.82, 132.20, 131.96, 130.71, 129.78, 129.42, 129.23, 128.20, 123.67, 117.06.

HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$: $[\mathrm{M}+\mathrm{Na}]^{+} 422.9773$, Found 422.9178 .

(E)-1-(2-((4-fluorophenyl)sulfonyl)phenyl)-2-phenyldiazene(3c)

F Obtained as a orange solid in 86% yield; M.p. $107-108{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 2 \mathrm{H})$, $7.83-7.79$ (m, 2H), $7.70(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.69,148.95,138.43,134.70,132.16,131.12,131.05,130.67$, 129.35, 129.21, 123.66, 117.04, 116.01, 115.83. HRMS (ESI+): Calculated for C18H13FN2O2S: [M+Na]+ 341.0755, Found 341.0211.

(E)-1-(2-((4-nitrophenyl)sulfonyl)phenyl)-2-phenyldiazene (3d)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (d, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19$ (d, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.13$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (qd, $J=15.1,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (d, $J=5.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.57,150.15,148.90,148.06$, 137.29, 135.42, 132.50, 130.92, 129.65, 129.36, 123.90, 123.57, 117.21. HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}:[\mathrm{M}+\mathrm{H}]^{+} 368.07$, Found 368.0128.
(E)-1-(2-((4-methoxyphenyl)sulfonyl)phenyl)-2-phenyldiazene (3e)

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=20.9,6.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.64(\mathrm{dt}, J=21.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=12.8,6.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2 H), 3.76 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.21,152.75,149.02,139.16$, 134.23, 133.81, 131.95, 130.54, 129.16, 123.75, 116.92, 113.87, 55.57. HRMS (ESI+): Calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: $[\mathrm{M}+\mathrm{H}]^{+} 353.0954$, Found 4353.0419.

(E)-1-(2-((3-nitrophenyl)sulfonyl)phenyl)-2-phenyldiazene (3f)

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=3.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.64$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, $J=9.7,5.2,4.3 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.48,148.85,147.95,144.55,137.37,135.39,133.71,132.55,130.89,130.09$, 129.61, 129.39, 127.50, 123.75, 123.59, 117.29. HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$: $[\mathrm{M}+\mathrm{H}]^{+}$368.07, Found 368.0146.

(E)-1-(2-(naphthalen-2-ylsulfonyl)phenyl)-2-phenyldiazene (3g)

Obtained as a pale yellow solid in 84% yield; M.p. $139-140{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.57-8.44(\mathrm{~m}, 1 \mathrm{H}), 8.57-$ $8.46(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=22.7,8.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.70$ (ddd, $J=$ $9.2,6.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.72,149.00,138.98,138.59,134.97,134.59,132.01,131.95,130.63$, 130.19, 129.46, 129.17, 129.11, 128.96, 127.87, 127.36, 123.76, 123.03, 116.89.

HRMS (ESI+): Calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}:[\mathrm{M}+\mathrm{H}]+373.1005$, Found 373.0445 .

Obtained as a white solid in 90% yield; M.p. $101-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-$ $7.65(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=12.3,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.00,157.64,152.98,149.64,137.80,135.01,132.19,130.43$, 129.24, 129.13, 123.30, 117.89, 117.64, 13.04, 10.81. HRMS (ESI+): Calculated for C17H15N3O3S: $[\mathrm{M}+\mathrm{H}]+342.0907$, Found 342.0377.
(E)-1-phenyl-2-(2-(thiophen-2-ylsulfonyl)phenyl)diazene. (3i)

Obtained as a white solid in 87% yield; M.p. $100-101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.77$ $(\mathrm{m}, 1 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{t}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.67$, $149.00,143.44,139.35,134.53$, 134.38, 134.06, 132.12, 130.82, 129.25, 129.21, 127.23, 124.09, 116.89. HRMS (ESI+): Calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}:[\mathrm{M}+\mathrm{H}]+329.0413$, Found 329.0336.

(E)-1-(2-((5-chloro-3-methylbenzo[b]thiophen-2-yl)sulfonyl)phenyl)-2-

phenyldiazene. (3j)

Cl Obtained as a pale yellow solid in 89% yield; M.p. $156-157{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.46,149.41,140.55$, $139.83,138.46,137.09,134.91,132.15,131.31,130.53,129.58,128.98,127.89$, 124.12, 123.63, 123.21, 117.17, 12.35. HRMS (ESI +): Calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: $[\mathrm{M}+\mathrm{H}]+427.0336$, Found 426.9721 .

(E)-methyl 3-((2-(phenyldiazenyl)phenyl)sulfonyl)thiophene-2-carboxylate. (3k)

Obtained as a pale yellow solid in 73% yield; M.p. $92-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.44,154.45,152.40,151.33$, 146.00, 145.89, 139.06, 134.18, 132.02, 131.79, 130.11, 130.09, 128.90, 123.69, 116.34, 52.59. HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}:[\mathrm{M}+\mathrm{H}]+387.0468$, Found 386.9885.
(E)-1-phenyl-2-(2-(phenylsulfonyl)phenyl)diazene. (31)

Obtained as a orange solid in90\% yield; M.p. $149-150^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, J=6.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.75(\mathrm{~m}, 2 \mathrm{H})$, 7.68 (dtd, $J=22.5,7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62-7.58$ (m, 1H), $7.54-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.49-$ $7.45(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=10.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.56$, 143.29, 142.32, 138.53, 134.56, 132.96, 132.04, 130.59, 129.46, 129.11, 128.66, 128.05, 123.77, 116.92. HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}:[\mathrm{M}+\mathrm{H}]+$ 356.0395, Found 357.0432.
(E)-1-(2-((4-chlorophenyl)sulfonyl)phenyl)-2-phenyldiazene. (3m)

Obtained as a orange solid in 82% yield; M.p. $170-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.76(\mathrm{~m}, 2 \mathrm{H})$, 7.71 (td, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57$ $-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.65,148.94$, 140.76, 139.61, 138.19, 134.79, 132.17, 130.68, 129.69, 129.40, 129.20, 128.95, 123.65, 117.03. HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}:[\mathrm{M}+\mathrm{H}]+322.0776$, Found 323.0832.

(E)-1-(2-((4-(tert-butyl)phenyl)sulfonyl)phenyl)-2-phenyldiazene. (3n)

Obtained as a orange solid in 91% yield; M.p. $140-141^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H})$, $7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H})$, $1.22(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.81,152.66,149.13$, 139.31, 138.77, 134.40, 131.98, 130.54, 129.28, 129.07, 127.89, 125.71, 123.78, 116.92, 35.08, 31.00. HRMS (ESI+): Calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}:[\mathrm{M}+\mathrm{H}]+$ 378.1402, Found 379.1446.

(E)-1-(4-methyl-2-tosylphenyl)-2-(p-tolyl)diazene(3o)

Obtained as a orange solid in 86% yield; M.p. $174-175^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23$ (s, 1H), 7.87 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.91,147.03,143.72,142.46,141.26,139.60,138.53,134.88$, $129.73,129.62,129.23,128.14,123.73,116.73,21.61,21.53,21.45$. HRMS (ESI+):

Calculated for C21H20N2O2S: $[\mathrm{M}+\mathrm{H}]+365.1318$, Found 365.076.

(E)-1-(5-methyl-2-tosylphenyl)-2-(m-tolyl)diazene. (3p)

Obtained as a white solid in 75% yield; M. p. $96-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$152.80,149.06,145.57,143.66,139.72,138.95,135.91,132.69,130.96,129.45$, $129.24,128.92,128.04,123.82,121.45,117.18,21.62,21.54,21.38$. HRMS (ESI+): Calculated for C21H20N2O2S: $[\mathrm{M}+\mathrm{H}]+365.1318$, Found 365.0756.
(E)-1-(4-ethoxy-2-tosylphenyl)-2-(4-ethoxyphenyl)diazene. (3q)

Obtained as a white solid in 83% yield; M.p. 95-96 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.79 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 161.77, 160.33, 147.13, 143.71, 142.76, 140.11, 139.61, 129.22, 128.07, $125.53,120.75,118.35,114.60,113.75,64.55,63.90,21.53,14.77,14.65$.
HRMS (ESI+): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}:[\mathrm{M}+\mathrm{H}]^{+} 425.153$, Found 425.0923.
(E)-1-(5-methoxy-2-tosylphenyl)-2-(3-methoxyphenyl)diazene. (3r)

Obtained as a orange solid in 85% yield; M. p. 139-140
${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.15,160.33,153.79,150.71,143.56,140.06,131.45,130.97,129.82$, 129.31, 127.80, 118.86, 118.10, 116.19, 106.73, 101.29, 55.98, 55.56, 21.51. HRMS (ESI+): Calculated for C21H20N2O4S: $[\mathrm{M}+\mathrm{H}]+397.1217$, Found 397.0627.
(E)-1-(3-methoxyphenyl)-2-(2-tosylphenyl)diazene. (3s)

Obtained as a orange solid in 15% yield; M.p. $73-74{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.58$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (dd, $J=5.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.42,149.01$, 143.93, 139.37, 138.70, 137.02, 134.38, 130.58, 129.80, 129.46, 129.35, 128.12, 118.76, 117.98, 116.93, 106.76, 55.56, 21.55. HRMS (ESI+): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}:[\mathrm{M}+\mathrm{H}]+367.1111$, Found 367.0548.
(E)-1-(5-methoxy-2-tosylphenyl)-2-phenyldiazene.(3t)

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.50$ (m, 3H), 7.15 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.13$, 152.57, 150.71, 143.54, 140.00, 132.05, 131.36, 131.11, 129.23, 129.12, 127.94, 123.84, 116.15, 101.22, 55.97, 21.51. HRMS (ESI+): Calculated for C20H18N2O3S: [M+H]+ 367.1111, Found 367.0548.

(E)-1-(5-methoxy-2-tosylphenyl)-2-(m-tolyl)diazene.(3u)

Obtained as a orange solid in 81% yield; M.p. $70-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (dd, $J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (s, $3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.14,152.67,150.79$, 143.48, 140.06, 138.98, 132.84, 131.35, 130.95, 129.22, 128.92, 127.89, 123.93, $121.57,116.04,101.19,55.95,21.53,21.37$. HRMS (ESI+): Calculated for C21H20N2O3S: [M+H]+ 381.1267, Found 381.0685.

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR
ON-4
PROTON CDC13 E: $\backslash \backslash \mathrm{XKL} 7$

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

3a

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

C5021

${ }^{1} \mathrm{H}$ NMR

$1\left\|\|_{1}\right.$

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

3 g
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

18.01
20.81

sh

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR
Csol4A ${ }_{\text {Proton CDC1 }}^{\text {n }}$

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C} \mathrm{NM}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR
CSO15

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

\qquad
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

5. X-ray Crystal Data for GPT-Pd catalyst 3b

Crystals of GPT-Pd catalyst $\mathbf{3 c}\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}\right)$ were recrystallized from a trichloromethane solution. A single white needle crystal which was suitable for X-ray diffraction measurements was mounted on a glass fiber. Unit cell measurements and intensity data collections were performed on a Rigaku AFC7R diffractometer with graphite monochromated Mo Ka. The data reduction included a correction for Lorentz and polarization effects, with an applied multi-scan absorption correction (SADABS). The crystal structure was solved and refined using the SHELXTL-97 program suite. Direct methods yielded all non-hydrogen atoms which were refined with anisotropic thermal parameters. The reflection data were consistent with a monoclinic system: P2(1)/c. The obtained crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: 1057250 (CCDC NO). The crystallographic data and refinement parameters of $\mathbf{3 c}$ are listed in Table S1.

Table S1. Crystallographic data and structure refinement for $\mathbf{3 b}$.

Identification code	
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	401.27
Temperature, K	$296(2) \mathrm{K}$
Wavelength, \AA	$0.71073 \AA$
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Cell dimensions	
a, b, c, \AA	$7.891(2) \AA, 18.770(5) \AA, 11.594(3) \AA$
$\alpha, \beta, \gamma,{ }^{\circ}$	$90.00^{\circ}, 96.858(5)^{\circ}, 90.00^{\circ}$
Volume, \AA^{3}	$1704.9(8) \AA^{3}$
Z	4
Calculated density, $\mathrm{g} / \mathrm{cm}^{3}$	1.563
Absorption coefficient, mm^{-1}	2.546
$F(000)$	808

Crystal size, mm	$0.22 \times 0.21 \times 0.20 \mathrm{~mm}$
Theta range for data collection, ${ }^{\circ}$	2.08 to 25.10 deg
Limiting indices	$-9<=\mathrm{h}<=7,-21<=\mathrm{k}<=22,-13<=1<=13$
Completeness to theta $=25.01^{\circ}$	99.8%
Absorption correction	multi-scan
Max. and min. transmission	0.6299 and 0.6043
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$3037 / 0 / 217$
Goodness of fit on F^{2}	1.071
R indices $[I>2 \sigma(I)]$	$\mathrm{R} 1=0.0630, \mathrm{wR} 2=0.2137$
R indices (all data)	$\mathrm{R} 1=0.0842, \mathrm{wR} 2=0.2137$
Largest diff. peak and hole, e \AA^{-3}	1.145 and $-0.680 \mathrm{e} . \mathrm{A}^{\wedge}-3$

6.References

[1] C. Zhang, N. Jiao, Angew. Chem, Int. Ed. 2010, 49, 6174-6177.

[^0]: [a] Pharmacy College, Zhejiang University of Technology, Hangzhou 310014, China
 [b] College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 China E-mail: chxyzpf@hotmail.com
 [c] Pharmacy College, Taishan Medical University, Tai'an 271016, China

