Supporting Information

Visible Light Assisted Photocatalytic Hydrogen Generation by Ta₂O₅/Bi₂O₃, TaON/Bi₂O₃, and

Ta₃N₅/Bi₂O₃ Composites

Shiba P. Adhikari,^{a, b} Zachary D. Hood,^cKarren L. More,^c Ilia Ivanov,^c Lifeng Zhang,^d Michael Gross,^{a, b} and Abdou Lachgar^{*a, b}

1.1 Synthesis of tantalum oxide nanoparticles

In a typical synthesis of tantalum oxide nanoparticles, 1 g of tantalum chloride was dissolved in 60 mL of anhydrous benzyl alcohol. The whole mass was sealed in a Teflon lined autoclave and heated at 220 °C for 48 hours. The solid mass was obtained by centrifugation, washed with ethyl alcohol several times and vacuum dried at 70 °C overnight. Based upon the thermogravimetric analysis, the sample was calcined at 700 °C for 2 hours to obtain the pure phase of tantalum oxide (TA-700).¹

1.2 Synthesis of tantalum oxynitride and tantalum nitride

In a typical synthesis of tantalum oxynitride (TaON), 500 mg of Ta_2O_5 powder were heated at 825 °C for 6 hours in a tube furnace under a constant flow of ammonia (20 mL/ min) where ammonia gas was passed through a round bottom flask containing deionized water. Similarly tantalum nitride (Ta_3N_5) was synthesized from Ta_2O_5 powder under the same conditions but using dry ammonia (without passing the ammonia through deionized water).²

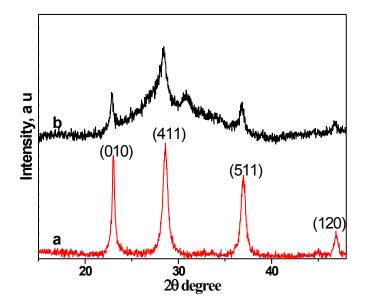


Fig. 1S- XRD patterns of tantalum oxide nanoparticle (a) and as synthesized BITA composite before heating at 400 °C (b)

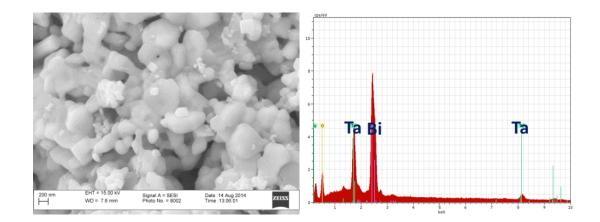


Fig. 2SI-SEM images and EDS spectrum of bismuth tantalate (BITA-1000).



Fig. 2SII- SEM images of Tantalum oxynitride (a) and tantalum nitride (b).

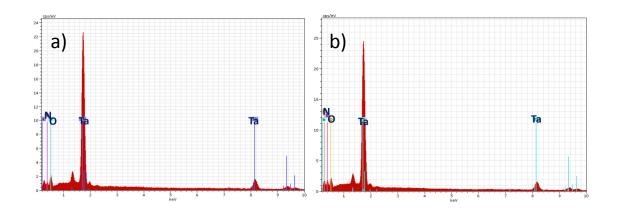
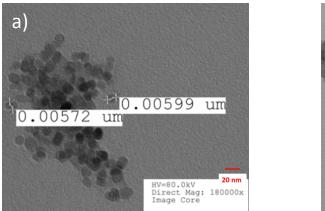



Fig. 2SIII- EDS spectrum of Tantalum oxynitride (a) and tantalum nitride (b).

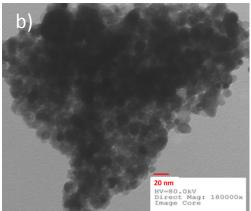


Fig. 3S- TEM images of tantalum oxide nanoparticle. (a) as synthesized and (b) calcined at 700 0 C.

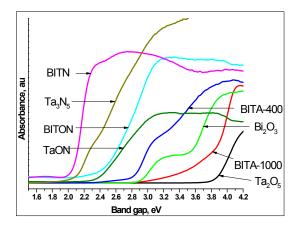


Fig. 4S- UV/Vis diffuse reflectance spectra of synthesized products.

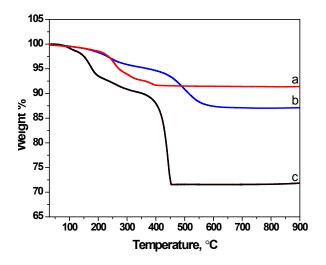


Fig. 5S-Thermogravimetric analysis of a) BITA composite b) tantalum oxide c) bismuth oxide

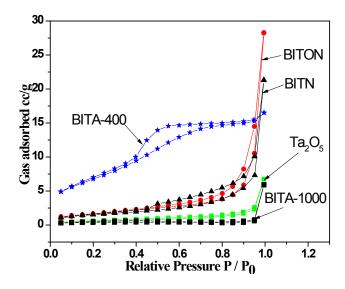


Fig. 6S- N2 adsorption desorption isotherms of BITA-400, BITON, BITN and BITA-1000

References

- 1. J. Buha, D. Arcon, M. Niederberger and I. Djerdj, Phys. Chem. Chem. Phys., 2010, 12, 15537-15543
- M. Y. Tsang, Macroporous semiconductors tantalum oxide, (oxy)nitride and nitride for photocatalytic hydrogen evolution. M.Sc. thesis; University of York, 2010.