Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

> Anthracene-based ferrocenylselenoethers: syntheses, crystal structures, Cu(I) complexes and sensoring property Yu-Qing Liu<sup>a</sup>, Wei Ji<sup>a,b</sup>, Hai-Yan Zhou<sup>a</sup>, Yu Li<sup>a</sup>, Su Jing<sup>\*,a</sup>, Dun-Ru Zhu<sup>\*,b</sup>, Jian Zhang<sup>c</sup> 2 3 <sup>a</sup>College of Sciences, Nanjing Tech University, Nanjing 211816, P.R. China. E-mail: sjing@njtech.edu.cn. 4 <sup>b</sup>College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China. E-mail: zhudr@njtech.edu.cn. 5 <sup>c</sup>Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China. 6 **Table of contents** 8 9 Fig. S1: <sup>1</sup>H NMR spectrum of L3, CDCl<sub>3</sub>, 298 K. 10 Fig. S2: <sup>1</sup>H NMR spectrum of L4, CDCl<sub>3</sub>, 298 K. 11 12 Fig. S3: <sup>1</sup>H NMR spectrum of L5, CDCl<sub>3</sub>, 298 K. 13 Fig. S4: MALDI-TOF Spectrum of L3 Fig. S5: MALDI-TOF Spectrum of L4 14 15 Fig. S6: ESI-MS spectrum of L5 Fig. S7: Fluorescence spectra change of L3 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions. 16 **Fig. S8:** Fluorescence spectra change of L4 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions. 17 Fig. S9: UV/vis spectra changes of receptor L3 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon the addition of various metal ions. 18 Fig. S10: UV/vis spectra changes of receptor L4 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon the addition of various metal ions. 19 Fig. S11: UV/vis spectra changes of receptor L5 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon the addition of various metal ions. 20 Fig.S12: Absorbance of L5 at different concentrations of  $Zn^{2+}$  added, normalized between the minimum absorbance and the maximum 21 absorbance intensity. The detection limit was determined to be  $6.62 \times 10^{-6}$  M. 22 23 **Fig.S13:** Benesi-Hilderbrand plot of L5 with  $Zn(ClO_4)_2$ .

- Fig.S14: Absorbance of L5 at different concentrations of  $Cu^{2+}$  added, normalized between the minimum absorbance and the maximum absorbance intensity. The detection limit was determined to be  $5.26 \times 10^{-5}$ M.
- 26 Fig.S15: Benesi-Hilderbrand plot of L5 with Cu(ClO<sub>4</sub>)<sub>2</sub>.
- Fig.S16: Cyclic voltammogram of L3 (black line) in  $CH_3CN/CH_2Cl_2$  (1:1, v/v) solution upon addition of excess  $Cu(ClO_4)_2$  (red line) and Hg(ClO<sub>4</sub>)<sub>2</sub> (green line).
- 29 Fig.S17: Cyclic voltammogram of L4 (black line) in CH<sub>3</sub>CN/CH<sub>2</sub>Cl<sub>2</sub> (1:1, v/v) solution upon addition of excess Cu(ClO<sub>4</sub>)<sub>2</sub> (red line) and
- 30  $Hg(ClO_4)_2$  (green line).
- 31 Fig. S18: Cyclic voltammogram of L5 (black line) in  $CH_3CN/CH_2Cl_2(1:1, v/v)$  solution upon addition of excess  $Cu(ClO_4)_2$  (red line),  $Zn(ClO_4)_2$
- 32 (blue line) and  $Hg(ClO_4)_2$  (green line).
- 33 Fig.S19: IR spectrum of L5
- 34 Fig.S20: IR spectrum of L5 with excess Cu(ClO<sub>4</sub>)<sub>2</sub>
- 35 Fig.S21: IR spectrum of L5 with excess  $Zn(ClO_4)_2$
- 36 Fig.S22: IR spectrum of L5 with excess  $Hg(ClO_4)_2$
- 37 Table S1: Selected Bond Lengths (Å) and Bond Angles (°) for L3-L5
- 38 **Table S2.** Selected Bond Lengths (Å) and Bond Angles (°) for 1-4
- 39
- 40
- 41
- 42

44 **Fig. S1:** <sup>1</sup>H NMR spectrum of **L3**, CDCl<sub>3</sub>, 298 K.

- 45
- 46

443 431 419 3.74 3.74 3.74 3.74 3.74 3.75 3.35 3.35 3.35 2.67 2.67 2.67 2.67



**Fig. S2:** <sup>1</sup>H NMR spectrum of **L4**, CDCl<sub>3</sub>, 298 K.





**Fig. S3:** <sup>1</sup>H NMR spectrum of **L5**, CDCl<sub>3</sub>, 298 K.















- Fig. S8: Fluorescence spectra change of L4 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions of 14 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition of various metal ions ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon addition ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon ( $14 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub>



97 Fig. S9: UV/vis spectra changes of receptor L3 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon the addition of various metal ions.

99



102 Fig. S10: UV/vis spectra changes of receptor L4 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon the addition of various metal ions.





Fig. S11: UV/vis spectra changes of receptor L5 ( $1 \times 10^{-4}$  M) in a CH<sub>2</sub>Cl<sub>2</sub> solution upon the addition of various metal ions.

116 Fig.S12: Absorbance of L5 at different concentrations of  $Zn^{2+}$  added, normalized between the minimum absorbance and the maximum117absorbance intensity. The detection limit was determined to be  $6.62 \times 10^{-6}$  M.



**Fig.S13:** Benesi-Hilderbrand plot of L5 with  $Zn(ClO_4)_2$ .



127 Fig.S14: Absorbance of L5 at different concentrations of  $Cu^{2+}$  added, normalized between the minimum absorbance and the maximum128absorbance intensity. The detection limit was determined to be  $5.26 \times 10^{-5}$ M.



**Fig.S15:** Benesi-Hilderbrand plot of L5 with Cu(ClO<sub>4</sub>)<sub>2</sub>.



**Fig. S16:** Cyclic voltammogram of L3 (black line) in  $CH_3CN/CH_2Cl_2$  (1:1, v/v) solution upon addition of excess  $Cu(ClO_4)_2$  (red line) and 143 Hg(ClO<sub>4</sub>)<sub>2</sub> (green line). 



Fig. S17: Cyclic voltammogram of L4 (black line) in  $CH_3CN/CH_2Cl_2$  (1:1, v/v) solution upon addition of excess  $Cu(ClO_4)_2$  (red line) and Hg( $ClO_4$ )<sub>2</sub> (green line).



Fig.S18: Cyclic voltammogram of L5 (black line) in  $CH_3CN/CH_2Cl_2$  (1:1, v/v) solution upon addition of excess  $Cu(ClO_4)_2$  (red line),  $Zn(ClO_4)_2$ (blue line) and  $Hg(ClO_4)_2$  (green line).







**Fig.S19:** IR spectrum of **L5** 

**Fig.S20:** IR spectrum of L5 with excess  $Cu(ClO_4)_2$ 





**Fig.S21:** IR spectrum of L5 with excess  $Zn(ClO_4)_2$ 



**Fig.S22:** IR spectrum of L5 with excess  $Hg(ClO_4)_2$ 

|            | L3       |             | L4        |             | L5       |
|------------|----------|-------------|-----------|-------------|----------|
| Se1-C1     | 1.898(5) | Se1-C11     | 1.902(4)  | Se1-C1      | 1.907(4) |
| Sel-Cl1    | 1.966(6) | Se1-C23     | 1.958(4)  | Sel-C21     | 1.968(4) |
| Se2-C6     | 1.912(5) | Se2-C1      | 1.902(3)  | Se2-C11     | 1.913(4) |
| Se2-C13    | 1.954(5) | Se2-C21     | 1.974(4)  | Se2-C24     | 1.969(9) |
|            |          |             |           | N1-C25      | 1.463(4) |
|            |          |             |           | N1-C22      | 1.470(4) |
|            |          |             |           | N1-C23      | 1.478(4) |
| C1-Se1-C11 | 97.3(2)  | C11-Se1-C23 | 100.53(2) | C1-Se1-C21  | 98.85(2) |
| C6-Se2-C13 | 104.4(2) | C1-Se2-C21  | 97.64(2)  | C11-Se2-C24 | 94.45(2) |
|            |          |             |           | C25-N1-C22  | 110.8(3) |
|            |          |             |           | C25-N1-C23  | 111.4(3) |
|            |          |             |           | C22-N1-C23  | 113.8(3) |

| 78 | Table S1: Selected Bond Lengths (Å) and Bond Angles (°) for L3-L5 |
|----|-------------------------------------------------------------------|
|    |                                                                   |

|              | 1         | 2              |           |             | 3         |            | 4         |
|--------------|-----------|----------------|-----------|-------------|-----------|------------|-----------|
| Se1-C1       | 1.904(4)  | Se1-C1         | 1.896(4)  | Se1-C1      | 1.906(1)  | Sel-C18    | 1.888(7)  |
| Sel-Cl1      | 1.967(4)  | Sel-Cl1        | 1.984(5)  | Sel-Cl1     | 1.962(1)  | Sel-C17    | 1.975(6)  |
| Se2-C6       | 1.915(4)  | Se2-C6         | 1.902(5)  | Se2-C6      | 1.914(9)  | Se2-C30    | 1.878(7)  |
| Se2-C27      | 1.962(4)  | Se2-C27        | 1.971(5)  | Se2-C13     | 1.967(1)  | Se2-C29    | 1.964(7)  |
| Cu-Cu#1      | 2.793(1)  | Cu1-Cu1#1      | 2.782(1)  | Cu1-Cu2     | 2.612(2)  | Sel-Cul    | 2.436(1)  |
| Sel-Cu       | 2.433(7)  | Se1-Cu1        | 2.454(8)  | Se1-Cu1     | 2.430(2)  | Se2-Cu2#1  | 2.415(1)  |
| Se2-Cu       | 2.436(7)  | Se2-Cu1        | 2.451(8)  | Se2-Cu1     | 2.444(2)  | Se3-Cu3    | 2.433(1)  |
| Br-Cu        | 2.452(7)  | I1-Cu1         | 2.602(7)  | Se3-Cu2     | 2.430(2)  | Se4-Cu4#2  | 2.428(1)  |
| Br-Cu#1      | 2.492(7)  | I1-Cu1#1       | 2.627(8)  | Se4-Cu2     | 2.433(2)  | Cu2-Se2#1  | 2.415(1)  |
| Cu-Br#1      | 2.492(7)  | Cu1-I1#1       | 2.627(8)  | I2-Cu1      | 2.566(2)  | Cu4-Se4#2  | 2.428(1)  |
|              |           |                |           | I2-Cu2      | 2.663(2)  | Cu1-Cu3    | 2.768(2)  |
|              |           |                |           | I1-Cu2      | 2.557(2)  | Cu1-Cu4    | 2.886(2)  |
|              |           |                |           | I1-Cu1      | 2.638(2)  | Cu1-Cu2    | 2.811(2)  |
| Se1-Cu-Se2   | 114.55(2) | Se2-Cu1-Se1    | 112.40(3) | Se1-Cu1-Se2 | 99.72(6)  | Cu2-Cu3    | 2.788(2)  |
| Se1-Cu-Br    | 109.77(3) | Se1-Cu1-I1     | 105.49(3) | Se1-Cu1-I2  | 115.81(7) | Cu2-Cu4    | 2.752(1)  |
| Se2-Cu-Br    | 109.23(2) | Se2-Cu1-I1#1   | 103.24(3) | Se2-Cu1-I2  | 112.76(6) | Cu3-Cu4    | 2.893(2)  |
| Se1-Cu-Br#1  | 109.86(3) | Se1-Cu1-I1#1   | 110.27(3) | Se1-Cu1-Cu2 | 129.31(8) | I1-Cu1     | 2.646(8)  |
| Se2-Cu-Br#1  | 102.03(2) | Se2-Cu1-I1#1   | 103.24(3) | Se2-Cu1-Cu2 | 129.04(7) | I1-Cu2     | 2.656(1)  |
| Br-Cu-Br#1   | 111.21(2) | I1-Cu1-I1#1    | 115.71(2) | I2-Cu1-Cu2  | 61.88(4)  | I1-Cu3     | 2.705(1)  |
| Se1-Cu-Cu#1  | 126.87(3) | Se1-Cu1-Cu1#1  | 125.23(4) | Se1-Cu1-I1  | 100.35(6) | I2-Cu4     | 2.653(1)  |
| Se2-Cu-Cu#1  | 118.37(3) | Se2-Cu1-Cu1#1  | 122.35(3) | Se2-Cu1-I1  | 105.43(6) | I2-Cu1     | 2.691(1)  |
| Br-Cu-Cu#1   | 56.27(2)  | I1-Cu1-Cu1#1   | 58.30(2)  | I2-Cu1-I1   | 120.14(6) | I2-Cu2     | 2.777(9)  |
| Br#1-Cu-Cu#1 | 54.94(2)  | I1#1-Cu1-Cu1#1 | 57.41(2)  | Cu2-Cu1-I1  | 58.29(4)  | I3-Cu2     | 2.601(1)  |
|              |           |                |           | Se3-Cu2-Se4 | 99.34(6)  | I3-Cu3     | 2.698(1)  |
|              |           |                |           | Se3-Cu2-I1  | 116.87(7) | I3-Cu4     | 2.770(9)  |
|              |           |                |           | Se4-Cu2-I1  | 115.09(7) | I4-Cu3     | 2.631(8)  |
|              |           |                |           | Se3-Cu2-Cu1 | 129.65(7) | I4-Cu4     | 2.680(1)  |
|              |           |                |           | Se4-Cu2-Cu1 | 128.16(7) | I4-Cu1     | 2.697(1)  |
|              |           |                |           | I1-Cu2-Cu1  | 61.36(4)  | Sel-Cul-I1 | 110.34(4) |
|              |           |                |           | Se3-Cu2-I2  | 102.47(6) | Se1-Cu1-I2 | 102.11(3) |
|              |           |                |           | Se4-Cu2-I2  | 100.35(6) | I1-Cu1-I2  | 111.83(3) |

Table S2: Selected Bond Lengths (Å) and Bond Angles (°) for 1-4

|  | I1-Cu2-I2  | 119.54(6) | Se1-Cu1-I4   | 110.88(4) |
|--|------------|-----------|--------------|-----------|
|  | Cu1-Cu2-I2 | 58.21(4)  | I1-Cu1-I4    | 113.79(3) |
|  |            |           | I2-Cu1-I4    | 107.24(3) |
|  |            |           | Se2#1-Cu2-I3 | 114.01(4) |
|  |            |           | Se2#1-Cu2-I1 | 109.93(4) |
|  |            |           | I3-Cu2-I1    | 111.85(3) |
|  |            |           | Se2#1-Cu2-I2 | 95.42(3)  |
|  |            |           | I3-Cu2-I2    | 115.59(3) |
|  |            |           | I1-Cu2-I2    | 108.88(3) |
|  |            |           | Se3-Cu3-I4   | 112.80(4) |
|  |            |           | Se3-Cu3-I3   | 100.81(3) |
|  |            |           | I4-Cu3-I3    | 111.04(3) |
|  |            |           | Se3-Cu3-I1   | 109.89(3) |
|  |            |           | I4-Cu3-I1    | 113.99(3) |
|  |            |           | I3-Cu3-I1    | 107.39(3) |
|  |            |           | Se4#2-Cu4-I2 | 112.31(4) |
|  |            |           | Se4#2-Cu4-I4 | 109.24(4) |
|  |            |           | I2-Cu4-I4    | 108.88(3) |
|  |            |           | Se4#2-Cu4-I3 | 104.63(4) |
|  |            |           | I2-Cu4-I3    | 114.12(3) |
|  |            |           | I4-Cu4-I3    | 107.43(3) |