Supporting Information

High-performance Microwave Absorption of Flexible Nanocomposites

Based on Flower-like Co Superstructures and Polyvinylidene Fluoride

Xiao-Juan Zhang,^{§a} Guo-Cheng Lv,^{§b} Guang-Sheng Wang,*^a Tian-Yu Bai,^a Jia-Kang Qu,^a Xiao-Fang

Liu*c and Peng-Gang Yin*a

^a Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education,

School of Chemistry and Environment, Beihang University, Beijing 100191, PR China.

^b School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083,

China

^c School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

Fig.S1. Frequency dependence on imaginary parts of the complex (a) permittivity and (b) permeability of samples.

Sample	Matrix	Weight Content (%)	Thickness (mm)	The Minimum RL Value (dB)	The Effective Frequency Bandwidth (RL≦ -10 dB)
Ni–Fe– CNFs ¹	epoxy	40	2.37	-20.0	3.7 GHz
Co nanoporous structure ²	epoxy	65	1.20	-38.7	4.0 GHz
Ni–Co nanoferrites ³			2.50	-36.2	3.0 GHz
SiC/Co hybrid nanowires ⁴	wax	50	3.0	-25.0	6.6 GHz
GN/PEDOT/ Fe ₃ O ₄ nanoc omposites ⁵	wax	50	2.9	-56.5	3.0 GHz
Ni chains ⁶	wax	70	0.8	-19.9	4.3 GHz
Porous carbon/Co nanocomposi tes ⁷	wax	30	5.0	-40.0	
Ni/SnO ₂ com posites ⁸	wax	70	7.0	-18.6	1.5 GHz
Ni/ZnS composites ⁹	wax	70	2.7	-25.78	4.72 GHz
Fe ₃ O ₄ - polyaniline nanoparticles	wax	40	1.7	-35.1	

 Table S1 Electromagnetic absorption properties of some reported samples

Fig.S2. The photograph of the Co/PVDF membrane

Fig.S3 Frequency dependence on (a) real part and (b) imaginary part of the complex permittivity; (c) real part and (d) imaginary part of the complex permeability with error bars.

- 1. K.Y. Park, J.H. Han, S.B. Lee and J.W. Yi, *Composites, Part A*, 2011, **42**, 573.
- 2. J. Kong, F. Wang, X. Wan, J. Liu, M. Itoh and K.i. Machida, *Mater. Lett.*, 2012, 78, 69.
- 3. B.y. Chen, D. Chen, Z.t. Kang and Y.z. Zhang, J. Alloys Compd., 2015, 618, 222.
- 4. H. Wang, L. Wu, J. Jiao, J. Zhou, Y. Xu, H. Zhang, Z. Jiang, B. Shen and Z. Wang, J. Mater. Chem. A, 2015, **3**, 6517.
- 5. P. Liu, Y. Huang and X. Zhang, J. Alloys Compd., 2014, 617, 511.
- 6. B. Zhao, B. Fan, G. Shao, B. Wang, X. Pian, W. Li and R. Zhang, *Appl. Surf. Sci.*, 2014, **307**, 293.
- 7. Q. Liu, D. Zhang and T. Fan, Appl. Phys. Lett., 2008, 93, 013110.
- 8. B. Zhao, G. Shao, B. Fan, W. Li, X. Pian and R. Zhang, *Mater. Lett.*, 2014, **121**, 118.
- 9. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie and R. Zhang, *RSC Adv.*, 2014, 4, 61219.
- 10. Y. Sun, F. Xiao, X. Liu, C. Feng and C. Jin, *RSC Adv.*, 2013, **3**, 22554.