Supplementary Information

Large-scale fabrication of porous bulk silver thin sheets with tunable porosity for high-performance binder-free supercapacitor electrodes[†]

Xiangyu Wang, Pinghui Zhang, Sascha Vongehr, Shaochun Tang,* Yongguang Wang, Xiangkang Meng*

Institute of Materials Engineering, National Laboratory of Solid State Microstructures, and College of Engineering Applied Sciences, Nanjing University, Jiangsu, P. R. China

* Correspondence and requests for materials should be addressed to S.C. Tang (tangsc@nju.edu.cn) or X.K. Meng (mengxk@nju.edu.cn).

Figure captions:

Fig. S1 SEM images showing surface morphology of a pressed silver thin sheet before etching.

Fig. S2 SEM images of the products after 5 min etching of (a) a silver sheet obtained by pressing silver NPs, and (b) a commercial silver sheet.

Fig. S3 XRD pattern of the PSTS/Co₃O₄ composite obtained with a Co^{2+} concentration of 20 mM.

Fig. S4 CD curves at different current densities of the optimal $PSTS/Co_3O_4$ composite electrode with the Co_3O_4 loading of 2.9 mg/cm².

Fig. S1 SEM images showing surface morphology of a pressed silver thin sheet before etching.

Fig. S2 SEM images of the products after 5 min etching of (a) a silver sheet obtained by pressing silver NPs, and (b) a commercial silver sheet.

Fig. S3 XRD pattern of the $PSTS/Co_3O_4$ composite obtained with a Co^{2+} concentration of 20 mM.

Fig. S4 CD curves at different current densities of the optimal $PSTS/Co_3O_4$ composite electrode with the Co_3O_4 loading of 2.9 mg/cm².