Non-enzymatic detection of bilirubin based on Graphene – polystyrene sulfonate composite

T Balamurugan,^a and Sheela Berchmans ^{a*}

CSIR-Central Electrochemical Research Institute, Karaikudi-630006, Tamilnadu, India.

Supporting Information

Fig.S1. (A) SEM image of GC electrode surface before modification; (B) EDAS spectrum of RGO-PSS composite modified electrode. (C) UV-Vis spectrum of GO, RGO, RGO-PSS composite material.

Fig.S2. (A) CVs recorded for the BR (2.5 - 12μ M) response using bare GC electrode in Tris-HCl buffer pH8.5. (B) Chronoamperometry was recorded for the BR detection using bare GC electrode at 340mV vs NCE. (C) Interference study of related bio-compounds on BR sensor by Chronoamperometry using bare GC electrode at 340mV vs NCE.

Fig. S3. UV-Vis. Spectrum of complex formation of BR and HSA (30mg/ml).

Table 1: Bilirubin concentration in the serum sample was compared with the results from a commercial bilirubin-monitoring analyzer which adopts Jendrassik-Grof method.

Sample	BR detected by	BR detected by	Recovery
	commercial	proposed	(%)
	method (µM)	method (µM)	
1	0.54	0.53	98.1
2	0.85	0.83	97.6
3	1.12	1.13	100.1