Electronic Supplementary Information

Enhancing the Electrode Performance of Co₃O₄ through Co₃O₄@a-TiO₂ Core-Shell Microcubes with Controllable Pore Size

Yanting Chu,^a Jinkui Feng,^a Yitai Qian,^{a,b} Shenglin Xiong,^{a,c*}

^aKey Laboratory of the Colloid and Interface Chemistry, Ministry of Education,

and School of Chemistry and Chemical Engineering, Shandong University,

Jinan, 250100, PR China

E-mail: chexsl@sdu.edu.cn (S. L. X.)

^bHefei National Laboratory for Physical Science at Microscale and Department

of Chemistry, University of Science and Technology of China, Hefei, Anhui,

230026 (P. R. China)

^cCAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China

Supplementary Figures

Figure S1. High-magnification TEM images of the S-40, S-80, S-120 with a-TiO₂ layers of different thickness(S-40:a, b; S-80: c, d; S-120:e, f).

Figure S2. XRD pattern of the a-TiO₂.

Figure S3. EDS of the sample S-40 (a), S-80 (b), S-120 (c).

Sample	mass ratio	mass ratio	Co ₃ O ₄ :TiO ₂
	Co%	Ti%	mass ratio
			%
S-0			1:0
S-40	7.62	3.07	2.03:1
S-80	11.99	1.92	5.17:1
S-120	9.32	0.65	11.65:1

 Table S1. Quantitative analysis of Co and Ti contents by ICP-AES.

Table S2. Physical properties from N_2 sorption studies of the four samples.

Samples	Specific surface	BJH Desorption	Pore volume
	area	Average pore size	
	(m² g-1)	(nm)	(cm ³ g ⁻¹)
S-0	73.55	9.49	0.25
S-40	105.67	5.20	0.14
S-80	85.40	6.22	0.17
S-120	56.38	10.87	0.21

Figure S4. Cyclic voltammetry (CV) curves for the S-0 at a scan rate of 0.1 mV s⁻¹ in the voltage windows of 0.01-3.5 V.

Figure S5. The Coulombic efficiency for the samples (S-0: a; S-40: b; S-80: c; S-120: d).

Figure S6. Cycle performance of S-80 at a current density of 2 A g⁻¹.

Figure S7. Charge-discharge curves of a-TiO₂ at a current density of 0.5 A g⁻¹.