Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Aluminum interaction with 2-3-diphosphoglyceric acid. A computational study.

Noelia Luque¹, Jon I. Mujika¹, Elena Formoso¹ and Xabier Lopez¹

¹Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.

Supporting Information List:

- 1. Methodology assessment (Table S1)
- 2. The studied 13 Al-(2,3-DPG) complexes (Figure S2).
- 3. The studied 7 Al-(2,3-DPG)(Citr) complexes (Figure S3).

1 Methodology assessment

In order to assess that the methodology employed in this article was reliable, single-point calculations were carried out at the B3LYP/6-31++G(d,p) optimized structures by using three functionals (PBE0, M06-2X and BP86) and a triple- ζ basis set (6-311++G(3df,2p). The results are shown in Table S1, and compared with the original values computed at B3LYP/6-311++G(3df,2p) (Figure 1).

Table S1: Reaction energies in kcal mol^{-1} at physiological pH calculated with different DFT functionals: B3LYP, PBE0, M06-2X and BP86. The same basis set (6-311++G(3df,2p) was employed for all the calculations.

Structure	$\Delta G_{aq}^{Phys}(\text{B3LYP})$	$\Delta G_{aq}^{Phys}(\text{PBE0})$	$\Delta G_{aq}^{Phys}(ext{M06-2X})$	$\Delta G_{aq}^{Phys}(\text{BP86})$
Complexes 1:1				
$[\mathrm{Al}(\mathrm{DPG})_{AC}(\mathrm{H}_2\mathrm{O})_4]^{2-}$	-118.40	- 122 . 57	- 124 . 90	-120.01
$[Al(DPG)_{AC}(H_2O)_4]^{1-}$	- 99 . 05	- 103 . 85	- 106 . 67	- 102 . 29
$[Al(DPG)_{BC}(H_2O)_4]^{2-}$	- 102 . 82	- 106 . 62	- 108 . 24	- 105 . 26
$[Al(DPG)_{BC}(H_2O)_4]^{1-}$	- 95 . 43	- 99 . 04	- 100 . 70	- 97 . 63
$[\mathrm{Al}(\mathrm{DPG})_{AB}(\mathrm{H_2O})_4]^{2-}$	- 119 . 33	- 123 . 42	- 125 . 87	- 121 . 13
$[Al(DPG)_{ABC}(H_2O)_3]^{2-}$	- 123 . 54	- 128 . 95	- 132 . 00	- 127 . 86
$[Al(Citr)(H_2O)_3]^{1-}$	- 123 . 46	- 127 . 18	- 125 . 00	- 124 . 97
Complexes 1:2				
$[Al(DPG)_{2,AC}(H_2O)_2]^{7-}$	- 134 . 01	- 139 . 71	- 143 . 31	-136.75
$[Al(DPG)_{2,AC}^{\dagger}(H_2O)_2]^{5-}$	- 127 . 06	- 132 . 43	- 136 . 01	- 129 . 25
$[Al(DPG)_{2,AC}^{\ddagger}(H_2O)_2]^{5-}$	- 118 . 34	- 123 . 63	- 129 . 72	- 120 . 28
$[Al(DPG)_{2,AC}^{**}(H_2O)_2]^{5-}$	- 116 . 34	- 121 . 71	- 125 . 64	-118.59
$[Al(DPG)_{2,AC}^{***}(H_2O)_2]^{6-}$	-133.66	-139.29	-142.98	-136.31
$[Al(DPG)_{2,AC}^{*}(H_2O)_2]^{7-}$	-130.03	-135.11	-140.40	-132.35
$[Al(DPG)_{2,AB}(H_2O)_2]^{7-}$	- 136 . 85	- 143 . 07	- 149 . 13	- 139 . 25
$[Al(DPG)_{2,AB}^{\dagger}(H_2O)_2]^{5-}$	- 119 . 36	- 125 . 54	- 132 . 85	- 121 . 61
$[Al(DPG)_{2,AB}^{\ddagger}(H_2O)_2]^{5-}$	- 122 . 66	- 129 . 15	- 137 . 54	- 124 . 25
$[Al(DPG)_{2,AB}^{**}(H_2O)_2]^{5-}$	- 116 . 56	- 122 . 05	- 128 . 77	- 118 . 06
$[Al(DPG)_{2,AB}^{*}(H_2O)_2]^{7-}$	-140.89	-147.35	-153.84	-143.24
$[Al(DPG)_{2,AB}^{*,\dagger}(H_2O)_2]^{5-}$	-123.74	-129.80	-139.29	-124.98
$[\mathrm{Al}(\mathrm{DPG})_{2,ABC}]^{7-}$	-128.43	-137.66	-144.18	-118.81
$\frac{[\mathrm{Al}(\mathrm{Citr})_2]^{5-}}{[\mathrm{Al}(\mathrm{Citr})_2]^{5-}}$	-181.28	-184.37	-179.10	-181.25
Complexes 1:1:1				
$[Al(DPG)_{AC}(Citr)(H_2O)]^{6-}$	-161.39	-165.83	-166.12	-162.08
$[Al(DPG)_{AC}^{***}(Citr)(H_2O)]^{5-}$	- 156 . 79	-148.47	-150.24	-144.46
$[Al(DPG)_{AB}(Citr)(H_2O)]^{6-}$	- 156 . 64	-161.03	-162.34	-156.94
$[\mathrm{Al}(\mathrm{DPG})_{AB}^{***}(\mathrm{Citr})(\mathrm{H}_2\mathrm{O})]^{5-}$	-144.17	-161.01	-161.37	-157.02
$[Al(DPG)_{AB}^{****}(Citr)(H_2O)]^{5-}$	-152 . 52	-157.07	-158.92	-152.90
$[Al(DPG)_{ABC}(Citr)]^{6-}$	-157 . 82	-160 . 52	-160.24	-157.90
$[Al(DPG)_{ABC}^{***}(Citr)]^{5-}$	-149.90	-152.49	-151.97	-150.08

^{*} Different ligand substitution position. † Both phosphates of group B are protonated. † Both phosphates of group A are protonated. ** Different phosphate group are protonated in each ligand. *** One phosphate of group B is protonated. **** One phosphate of group A is protonated.

Figure S2: The 13 studied 1:2 Al-(2,3-DPG) complexes. The subscripts indicate the coordination mode of 2,3-DPG to Al(III) and the superscripts refer to the protonation states of the phosphates groups: (bb) both phosphates of group B are protonated, (aa) both phosphates of group A are protonated, (ab) different phosphate groups are protonated in each ligand, (b) one phosphate of group B is protonated, (a) one phosphate of group A is protonated, * different ligand substitution positions. The formation energies (ΔG_{aq}^{Phys}) are shown in kcal/mol.

Figure S3: The 7 studied ternary structures, Al-(2,3-DPG)(Citr) complexes. The subscripts indicate the coordination mode of 2,3-DPG to Al(III) and the superscripts refer to the protonation states of the phosphates groups: (b) one phosphate of group B is protonated, (a) one phosphate of group A is protonated. The formation energies (ΔG_{aq}^{Phys}) are shown in kcal/mol.

