Supporting Information

Yb(OTf)₃ catalysed regioselective synthesis of unusual di- and tri- substituted 3,4-dihydrothiochromeno[3,2-e][1,3]thiazin-5(2H)-one derivatives through a pseudo four-component hetero-Diels-Alder Reaction

Karuna Mahato,^a Prasanta Ray Bagdi^a and Abu T. Khan*^{a,b} *^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India* Tel.: +91 361 2582305; Fax: +91 361 2582349
^bPresent address: *Vice-Chancellor, Aliah University, IIA/27, New Town, Near Eco-Space, Kolkata-700 156, India*E-mail: atk@iitg.ernet.in (A.T. Khan)

Title nage	1
1110 9450	1
General Experimental Procedure	2
1	
ORTEP diagram of Compound 4f and 6b	3-4
Crystal Data and Structure Refinement for Compound 4f and 6b	5
Copies of ¹ H NMR, ¹³ C NMR and HRMS spectra of all Compounds	6-84
r · · · · · · · · · · · · · · · · · · ·	

I. General Information and Methods

¹H and ¹³C NMR spectra were recorded on 400 MHz, 600 MHz and 100 MHz, 150 MHz spectrometer TMS as internal reference; chemical shifts (δ scale) are reported in parts per million (ppm). ¹H NMR Spectra are reported in the order: multiplicity, coupling constant (*J* value) in hertz (Hz) and no of protons; signals were characterized as s (singlet), d (doublet), t (triplet), m (multiplet) and bs (broad). IR spectra were recorded in KBr. HRMS spectra were recorded using ESI (TOF) mode. The X-ray crystal structures were determined with a diffractometer. Complete crystallographic data of **4f** (CCDC no. 1029813) and **6b** (CCDC no. 1029814) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, Copies of this information may be obtained free of charge from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-1223-336033, e-mail: deposit@ccdc.cam.ac.uk or via: www.ccdc.cam.ac.uk).

Figure 1. 30% probability of ORTEP ellipsoids of 4f

Figure 2. 30% probability of ORTEP ellipsoids of 6b

Entry	Identification code	Compound 4f	Compound 6b
01	Empirical formula	C23 H15 Cl2 N O S2	C32 H27 N O S2
02	Formula weight	456.38	505.67
03	Temperature	296(2) K	296(2) K
04	Wavelength	0.71073	0.71073
05	Radiation type	Mo K\a	Mo K\a
06	Radiation source	Fine-focus sealed tube	Fine-focus sealed tube
07	Crystal system	Triclinic	Monoclinic
08	Space group	P-1	P21/c
09	Cell length	a 10.2935(7) b10.5264(9) c 10.7561(9)	a 11.6518(3) b 15.2049(4) c 14.9453(4)
10	Cell Angle	α 84.384(7) β 66.574(7) δ 76.989(6)	α 90.00 β 101.788(2) δ 90.00
11	Cell Volume	1041.89(16)	2591.93(12)
12	Density	1.458	1.300
13	Completeness to theta	28.87° / 99.6%	25.03° / 99.6%
14	Absorption correction	multi-scan	multi-scan
15	Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2
16	Index ranges	-13<=h<=13, -14<=k<=7, -14<=l<=14	-12<=h<=12, - 16<=k<=16, -16<=l<=16
17	Reflection number	5468	4580
18	Theta range	3.25-28.87	1.79-25.03
19	Cell formula units Z	2	4
20	CCDC no	1029813	1029814

 Table 1 Crystal Data and Structure Refinement for Compound 4f and 6b

¹HNMR spectra the compound: 4a

¹³CNMR spectra of compound: 4a

HRMS spectra of compound: 4a

¹HNMR spectra the compound: 4b

¹³CNMR spectra of compound: 4b

HRMS spectra of compound: 4b

¹HNMR spectra the compound: 4c

¹³CNMR spectra of compound: 4c

HRMS spectra of compound: 4c

¹HNMR spectra the compound: 4d

¹³CNMR spectra of compound: 4d

HRMS spectra of compound: 4d

¹HNMR spectra the compound: 4e

HRMS spectra of compound: 4e

¹HNMR spectra the compound: 4f

¹³CNMR spectra of compound: 4f

HRMS spectra of compound: 4f

¹HNMR spectra the compound: 4g

¹³CNMR spectra of compound: 4g

¹HNMR spectra the compound: 4g

¹HNMR spectra the compound: 4h

¹³CNMR spectra of compound: 4h

HRMS spectra of compound: 4h

¹HNMR spectra the compound: 4i

HRMS spectra of compound: 4i

¹HNMR spectra the compound: 4j

¹³CNMR spectra of compound: 4j

HRMS spectra of compound: 4j

¹HNMR spectra the compound: 4k

¹³CNMR spectra of compound: 4k

HRMS spectra of compound: 4k

¹HNMR spectra the compound: 6a

HRMS spectra of compound: 6a

¹HNMR spectra the compound: 6b

¹³CNMR spectra of compound: 6b

HRMS spectra of compound: 6b

¹HNMR spectra the compound: 6c

¹³CNMR spectra of compound: 6c

HRMS spectra of compound: 6c

¹HNMR spectra the compound: 6d

¹³CNMR spectra of compound: 6d

HRMS spectra of compound: 6d

¹HNMR spectra the compound: 6e

¹³CNMR spectra of compound: 6e

HRMS spectra of compound: 6e

¹HNMR spectra the compound: 6f

¹³CNMR spectra of compound: 6f

HRMS spectra of compound: 6f

¹HNMR spectra the compound: 6g

¹³CNMR spectra of compound: 6g

HRMS spectra of compound: 6g

¹HNMR spectra the compound: 6h

¹³CNMR spectra of compound: 6h

HRMS spectra of compound: 6h

¹HNMR spectra the compound: 6i

km-bam-h

¹³CNMR spectra of compound: 6i

HRMS spectra of compound: 6i

¹HNMR spectra the compound: 6j

¹³CNMR spectra of compound: 6j

HRMS spectra of compound: 6j

¹HNMR spectra the compound: 6k

¹³CNMR spectra of compound: 6k

HRMS spectra of compound: 6k

¹HNMR spectra the compound: 61

¹³CNMR spectra of compound: 61

HRMS spectra of compound: 61

¹HNMR spectra compound: 6m

Mercury-400 "IITG-NMR"

a an **ar** a congredered at the providence of the second second second second second second second second second

77 | Page

9300 repetitions

HRMS spectra of compound: 6m

¹HNMR spectra the compound: 6n

¹³CNMR spectra of compound: 6n

HRMS spectra of compound: 6n

¹HNMR spectra the compound: 60

¹³CNMR spectra of compound: 60

HRMS spectra of compound: 60

