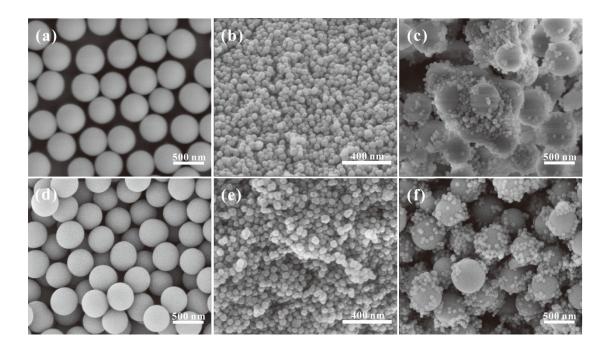
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

One-pot synthesis of bimodal silica nanospheres and their effects on the rheological and thermal-mechanical properties of silica-epoxy composites

Qian Guo,^{a,b} Pengli Zhu,*a Gang Li,^a Liang Huang,^{a,b} Yu Zhang,^a Daoqiang Daniel Lu,*a Rong Sun,*a and Chingping Wong^{c,d}


a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. E-mail: pl.zhu@siat.ac.cn

^b Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China

^c School of Materials Sciences and Engineering, Georgia Institute of Technology, Atlanta, USA

^d Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China

^{*}E-mail: pl.zhu@siat.ac.cn

Fig. S1 SEM images of the morphology of different kinds of fillers before (above) and after (below) calcination at 800 °C: (a, d) L-SMSs, (b, e) S-SNSs, and (c, f) B-SNSs.

There are no obvious differences in morphology between the silica fillers before (Fig. S1 above) and after (Fig. S1 below) calcination at 800 °C, which indicates that the calcination process used in this work could not lead the silica fillers to be sintered.