Supporting Information

Discovery of a low affinity thyrotropin-releasing hormone (TRH)-like peptide that exhibits potent inhibition of scopolamine-induced memory impairment in mice

Chhuttan L. Meena,[†] Shubdha Ingole,[⊥] Avinash Thakur,[⊥] Satyendra Rajpoot,[⊥] Prajwal P. Nandeker,[#] Abhay T. Sangamwar,[#] Shyam S. Sharma,[†] and Rahul Jain[†]*

[†]Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research,

Sector 67, S.A.S. Nagar, 160 062, Punjab, India

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India

[#]Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160 062, Punjab, India

CONTENTS

S1. ¹H-NMR spectrum of 6a S2. ¹³C-NMR spectrum of 6a **S3. HPLC chromatogram of 6a** S4. ¹H-NMR spectrum of 6b S5. ¹³C-NMR Spectrum of 6b S6. HPLC chromatogram of 6b S7. ¹H-NMR spectrum of 6c S8.¹³C-NMR spectrum of 6c **S9. HPLC chromatogram of 6c** S10.¹H-NMR spectrum of 6d S11. ¹³C-NMR Spectrum of 6d S12.HPLCchromatogramof 6d S13. ¹H-NMR spectrum of 6e S14.¹³C-NMR spectrum of 6e **S15. HPLC chromatogram of 6e** S16. ¹H-NMR spectrum of 6f S17.¹³C-NMR spectrum of 6f S18. HPLC chromatogram of 6f S19. ¹H-NMR spectrum of 6g S20.¹³C-NMR Spectrum of 6g S21. HPLC chromatogram of 6g S22. ¹H-NMR Spectrum of 6h S23.¹³C-NMR Spectrum of 6h S24. HRMS of 6h S25. ¹H-NMR Spectrum of 6i S26.¹³C-NMR Spectrum of 6i S27. HRMS of 6i S28. ¹H-NMR Spectrum of 6j S29. ¹³C-NMR Spectrum of 6j **S30. HPLC chromatogram of 6j** S31. ¹H-NMR Spectrum of 6k S32. ¹³C-NMR Spectrum of 6k **S33. HPLC chromatogram of 6k** S34. ¹H-NMR Spectrum of 61 S35.¹³C- NMR Spectrum of 6l S36. HPLC chromatogram 6l S37. ¹H-NMR Spectrum of 6m S38.¹³C-NMR Spectrum of 6m S39. HPLC chromatogram of 6m S40.¹H-NMR Spectrum of 6n S41. ¹³C-NMR Spectrum of 6n S42. HPLC chromatogram of 6n S43. ¹H-NMR Spectrum of 60 S44. ¹³C- NMR Spectrum of 60 **S45. HPLC chromatogram of 60**

S46.¹H-NMR Spectrum of 6p S47. ¹³C-NMR Spectrum of 6p S48. HPLC chromatogram of 6p S49. ¹H-NMR Spectrum of 6q S50. ¹³C-NMR Spectrum of 6q S51. HPLC chromatogram of 6q S52. ¹H-NMR Spectrum of 6r S53. ¹³C-NMR Spectrum of 6r S54. HPLC chromatogram of 6r S55. ¹H-NMR Spectrum of 6s S56.¹³C-NMR Spectrum of 6sof **S57. HPLC chromatogram of 6s S58.¹H-NMR Spectrum of 6t** S59. ¹³C-NMR Spectrum of 6t S60. HPLC chromatogram of 6t S61. ¹H-NMR Spectrum of 6u S62.¹³C-NMR Spectrum of 6u S63. HPLC chromatogram of 6u S64. ¹H-NMR Spectrum of 6v S65. ¹³C-NMR Spectrum of 6v S66. HPLC chromatogram of 6v S67. ¹H-NMR Spectrum of 6w S68.¹³C-NMR Spectrum of 6w S69. HPLC chromatogram of 6w S70. Material and method of receptor binding assay

S71. Material and method of FLIPR assay

S72. Material and method of in-vivo reversal of pentobarbital-induced sleeping time assay

S73 Statistical analysis

S74 Material methods functional observational Battery

Experimental

The reaction monitoring and compounds purity was checked on pre-coated silica gel G₂₅₄ TLC plates (Merck) through the spotting and visualization under UV spectrophotometer or by exposing them to iodine vapors. Column chromatographic purification was carried out on Merck silica gel (230-400 mesh) or neutral alumina. IR spectra (λ_{max} in cm⁻¹) were recorded on Nicolet FT-IR Impact 410 instrument either as neat or with KBr pellets. ¹H NMR spectra were recorded on 400 MHz Bruker FT-NMR (Advance DP X 400) spectrometer-using tetramethylsilane as the internal standard and the chemical shifts are reported in δ (ppm) units. Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad singlet. The sample concentration in each case was approximately 7 mg in 0.5 mL of the solvent. Mass spectra were recorded on either GCMS (Shimazdu QP 5000 spectrometer) auto sampler/direct injection (EI/CI) or LC (Finnigan Mat LCQ spectrometer) (APCI/ESI). The HRMS spectra were recorded on Bruker Maxis mass spectrometer. The melting points were recorded on capillary melting point apparatus or on the PerkinElmer DSC instrument and are uncorrected.

General method for the synthesis of R₁-L-His(1-alkyl)-L-ProNH₂ (6a-w)

The respective dipeptides (4a-e) were dissolved in 40% CF₃CO₂H in CH₂Cl₂ (5 mL) and stirred for 30 min at 0 °C. The resulting dipeptide salt (5a-e) were neutralized by added a solution of 7N methanolic ammonia solution (5 mL) and stirring the mixture for 10 min at ambient temperature. The solvent was evaporated under reduced pressure to afford free dipeptide, which was used in the next coupling step without isolation. The free dipeptide (1 mmol) was dissolved in DMF (5 mL) and cooled to 4°C. The requisite hetero ring-containing carboxylic acid (1 mmol), DIC (1.1 mmol) and 1-hydroxybenzotriazole (1.1 mmol) was added and the resulting mixture stirred at 4 °C for 36 h. The solvent was removed under reduced pressure and residue was purified by column chromatography using a stationary phase of neutral alumina and a mobile phase of 0-7% CH₃OH in CH₂Cl₂ to afford **6a-w**.

2-Pyz-L-His(1-methyl)-L-ProNH₂ (6a): Yield: 52%; white solid; mp.: 82-83°C; IR (KBr): 3433, 1634 cm⁻¹; ¹H NMR (CD₃OD): δ 9.18 (d, 1H, *J* = 4 Hz), 8.78 (d, 1H, *J* = 4 Hz), 8.67 (d, 1H, *J* = 4 Hz), 7.49 (s, 1H), 6.97 (s, 1H), 5.06 (m, 1H), 4.45 (m, 1H), 3.57-3.87 (m, 2H), 3.67 (m, 3H) 3.02-3.20 (m, 2H), 2.22 (m, 2H), 2.00 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.67, 170.77, 163.24, 147.37, 144.37, 144.35, 143.44, 143.26, 137.64, 136.09, 119.08, 60.38, 51.67, 32.23, 29.66, 24.39; HRMS: *m/z* calcd for C₁₇H₂₁N₇O₃ [M+H]⁺: 372.1784, found, 372.1780; R_f = 0.37 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90); HPLC: *t*_R = 3.78 min, purity: 99.54% [CH₃CN-H₂O-TFA (70:30:0.8%)].

2-Pyz-L-His(1-ethyl)-L-ProNH₂ (6b): Yield: 45%; white solid mp.: 42-43°C; IR (KBr): 3429, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 9.18 (d 1H, *J* = 4 Hz) 8.78 (d, 1H, *J* = 4 Hz), 8.67 (d, 1H, *J* = 4 Hz), 7.56 (s, 1H), 7.05 (s, 1H), 5.07 (m, 1H), 4.60 (m, 1H), 3.99 (m, 2H), 3.67-3.86 (m, 2H), 3.08-3.17 (m, 2H), 2.00-1.96 (m, 4H), 1.39 (t, 3H, *J* = 4 Hz); ¹³C NMR (100 MHz, CD₃OD): δ 175.66, 170.78, 163.24, 147.37, 144.37, 144.35, 143.44, 143.26, 137.64, 136.094, 119.08, 60.38, 51.67, 32.23, 29.66, 24.39, 15.28; HRMS: *m/z* calcd for C₁₈H₂₃N₇NaO₃ [M+Na]⁺: 408.1760, found, 408.1761; R_f = 0.42 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 3.143 min, purity: 96.302% [CH₃CN-H₂O-TFA (70:30:0.8%)].

2-Pyz-L-His(1-propyl)-L-ProNH₂ (6c): Yield: 55%; white solid; mp.: 57-58°C; IR (KBr): 3433, 1634, cm⁻¹; ¹H NMR (CDCl₃): δ 9.20 (d, 1H, J = 4 Hz), 8.80 (d, 1H, J = 4 Hz), 8.69 (d, 1H, J = 4 Hz), 7.65 (s, 1H), 7.05 (s, 1H), 5.30 (m, 1H), 5.10 (m, 1H), 4.91 (m, 2H), 3.67 (m, 2H), 3.12-3.60 (m, 2H), 2.30 (m, 2H), 2.15 (m, 2H), 2.10 (m, 2H), 0.92 (t, 3H, J = 8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 175.69, 170.76, 163.19, 147.36, 144.34, 143.47, 136.99, 136.00, 117.85, 60.41, 51.69, 31.40, 29.79, 24.41; HRMS: m/z calcd for C₁₉H₂₅N₇NaO₃ [M+Na]⁺: 422.1917, found, 422.1918; R_f = 0.53 $[CH_3OH:10\% NH_4OH:CH_2Cl_2 (8:2:90); HPLC: t_R = 4.17 min, purity: 99.76\%$ [CH₃CN-H₂O-TFA (70:30:0.8.

2-Pyz-L-His(1-isopropyl)-L-ProNH₂ (6d): Yield: 46%; white solid; mp.: 80-81°C; IR (KBr): 3434, 1634 cm⁻¹; ¹H NMR (CD₃OD): δ 9.20 (d, 1H, J = 6 Hz), 8.80 (m,1H), 8.70 (m, 1H, J = 4 Hz), 7.63 (s, 1H), 7.15 (s, 1H), 5.09 (m, 1H), 4.47 (m, 1H), 4.38 (m, 1H), 3.52 (m, 2H), 3.06-3.23 (m, 2H), 2.23 (m, 2H), 2.01 (m, 2H), 1.47 (m, 6H); ¹³C NMR (100 MHz, CD₃OD): & 175.66, 170.76, 163.20, 147.37, 1.44.36, 143.47, 135.87, 135.073, 115.72, 60.42, 51.76, 49.37 29.90, 29.23, 29.36, 24.39; HRMS: *m/z* calcd for $C_{19}H_{25}N_7NaO_3$ [M+Na]⁺: 422.1917, found, 422.1910; $R_f = 0.51$ [CH₃OH:10%] NH₄OH:CH₂Cl₂ (8:2:90); HPLC: $t_{\rm R}$ = 4.31 min, purity: 99.22% [CH₃CN-H₂O-TFA (70:30:0.8%)].

2-Pyz-L-His(1-benzyl)-L-ProNH₂ (6e): Yield: 52%; white solid; mp.: 70-71°C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 9.17 (d, 1H, J = 1.4 Hz), 8.80 (m, 1H), 8.63 (d, 1H, J = 4.04 Hz), 7.67 (s, 1H), 7.05-7.32 (m, 5H), 7.90 (s, 1H), 5.15 (s, 2H), 5.06 (m, 1H), 4.44 (m, 1H), 3.85 (m, 2H), 2.92-3.18 (m, 2H), 2.22 (m, 2H), 1.99 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.65, 170.73, 163.37, 143.23, 142.09, 141.58, 136.21, 128.03, 127.67.127.00, 118.17, 60.23, 51.54, 50.21, 29.91, 29.36, 29.36, 24.38, 20.20; HRMS: *m/z* calcd for C₂₃H₂₅N₇NaO₃ [M+Na]⁺: 470.1917, found, 470.1918; $R_f = 0.67$ [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: $t_R = 3.93$ min, purity: 99.91% [CH₃CN-H₂O-TFA (70:30:0.8%)].

5-Mpyz-L-His(1-methyl)-L-ProNH₂ (6f): Yield: 50%; white solid; mp.: 51-52°C; IR (KBr): 3433, 1634 cm⁻¹; ¹H NMR (CD₃OD): δ 9.03 (s 1H), 8.78 (s 1H) 7.53 (s, 1H), 6.96 (s, 1H), 5.07 (m, 1H), 4.43 (m, 1H), 3.57-3.87 (m, 2H), 3.86 (m, 3H) 3.03-3.31 (m, 2H), 2.62 (s, 3H) 2.22 (m, 2H), 2.02 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.68, 170.88, 163.48, 155.57, 140.25, 140.25, 139.63, 136.11, 119.05, 60.38, 51.59, 32.23, 29.66, 24.39, 22.19; HRMS: m/z calcd for $C_{18}H_{23}N_7NaO_3[M+Na]^+$: 408.1760, found, 408.1763; $R_f = 0.57$ [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: $t_R = 4.31$ min, purity: 98.24% [CH₃CN-H₂O-TFA (70:30:0.8%)].

5-Mpyz-L-His(1-ethyl)-L-ProNH₂ (6g): Yield: 53%; white solid; mp.: 49-50°C; IR (KBr): 3418, 1644 cm⁻¹; ¹H NMR (CDCl₃): δ 9.23 (s, 1H), 8.40 (s, 1H), 7.35 (s, 1H), 6.80 (s, 1H), 5.07 (m, 1H), 4.66 (m, 1H), 3.96 (q, 2H, J=7.6 Hz), 3.63 (m, 2H), 3.10-3.23 (m, 2H), 2.65 (s, 3H), 2.27 (m, 2H), 2.13 (m, 2H) 1.46 (d, 3H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 174.67, 170.57, 163.37, 143.14, 142.63, 135.90, 116.92, 60.83, 51.29, 47.41, 41.97, 31.57, 29.25, 21.85, 16.23; HRMS: *m/z* calcd for $C_{19}H_{25}N_7NaO_3$ [M+Na]⁺:422.1917, found, 422.1916; $R_f = 0.67$ [CH₃OH:10%] NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: $t_R = 4.42 \text{ min}$, purity: 97.94% [CH₃CN-H₂O-TFA (70:30:0.8%)].

CONH₂

5-Mpyz-L-His(1-propyl)-L-ProNH₂ (6h): Yield: 43%; white solid; mp.: 47-48°C; IR (KBr): 3418, 1644 cm⁻¹; ¹H NMR (CD₃OD): δ 9.02 (s, 1H), 8.56 (s, 1H), 7.54 (s, 1H), 7.03 (s, 1H), 4.43 (m, 1H), 3.89 (m, 1H), 3.51 (s, 2H), 3.55 (m, 2H), 3.03-3.18 (m, 2H), 2.61 (s, 3H), 2.20 (m, 2H), 2.02 (m, 2H), 1.73 (m, 2H), 0.85 (m, 3H); ¹³C NMR (100 5 MHz, CD₃OD): δ 175.67, 170.82, 163.40, 143.24, 142.08, 141.63, 136.96, 136.04, 117.81, 60.41,51.61, 29.86, 24.39, 23.86, 20.20, 9.79; HRMS: m/z calcd for $C_{20}H_{27}N_7NaO_3$; [M+Na]⁺: 436. 2073, found, 436.2073; $R_f = 0.57$ [CH₃OH:10%] NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: $t_{\rm R} = 4.17$ min, purity: 99.76% [CH₃CN-H₂O-TFA (70:30:0.8%)]. 5-Mpyz-L-His(1-isopropyl)-L-ProNH₂ (6i): Yield: 48 %; white solid; mp: 52-53°C

IR (KBr): 3434, 1634 cm⁻¹; ¹H NMR (CD₃OD): δ 9.20 (s, 1H), 8.80 (m, 1H), 7.63 (s, 1H), 7.15 (s, 1H), 5.09 (m, 1H), 4.47 (m, 1H), 4.38 (m, 1H), 3.52 (m, 2H), 3.06-3.23 (m, 2H), 2.65 (s, 3H), 2.23 (m, 2H), 2.01 (m, 2H), 1.47 (m, 6H); ¹³C NMR (100 MHz, CD₃OD): 8 175.66, 170.76, 163.20, 147.37, 1.44.36, 143.47, 135.87, 135.073, 115.72, 60.42, 51.76, 49.37, 29.90, 29.23, 29.36, 24.39; HRMS: m/z calcd for $C_{20}H_{27}N_7NaO_3$

CONH₂

 $[M+H]^+$: 414.2250, found, 414.2251; $R_f = 0.43$ [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: $t_{\rm R} = 4.31$ min, purity: 97.42% [CH₃CN-H₂O-TFA (70:30:0.8%)]. 5-Mpyz-L-His(1-benzyl)-L-ProNH₂ (6j): Yield: 50%; mp.: 46-47°C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CDCl₃): δ 9.00 (s, 1H), 8.51 (s, 1H), 7.64 (s, 1H), 7.20-7.27 (m, 5H), 7.02 (s, 1H), 5.13 (s, 2H), 5.04 (m, 1H), 4.43 (m, 1H) 3.79 (m, 2H), 3.01-3.19 (m, 2H), 2.63 (s, 3H), 2.19 (m, 2H), 1.99 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.64, 170.80, 163.37, 143.233, 142.091, 141.58, 136.21, 128.032, 127.67, 127.06, 118.17, 60.23, 51.54, 50.21, 29.91, 29.36, 29.36, 24.38, 20.20; HRMS: m/z calcd for $C_{24}H_{27}N_7NaO_3$ [M+Na]⁺: 484.2073, found, 484.2076; R_f = 0.67 [CH₃OH:10%] NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: $t_R = 3.93$ min, purity: 99.91% [CH₃CN-H₂O-TFA (70:30:0.8%)].

3-Apyz-L-His(1-methyl)-L-ProNH₂ (6k): Yield: 52%; colorless solid; mp.:75-76°C; IR (KBr): 3434, 1641 cm⁻¹; ¹H NMR (CD₃OD): δ 8.14 (d, 1H, J = 8 Hz) 7.72 (m,1H) 7.41 (s, 1H), 6.83 (s, 1H), 4.92 (m, 1H), 4.33 (m, 1H), 3.57 (s, 3H), 3.20 (m, 2H), 2.99-3.05 (m, 2H), 2.12 (m, 2H), 2.07 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.74, 171.23, 162.29, 146.49, 137.62, 136.19, 131.21, 119.03, 60.37, 52.09, 51.23, 32.26, 29.84, 29.34, 29.02, 24.37, 23.63; HRMS: m/z calcd for $C_{17}H_{22}N_8NaO_3$ [M+Na]⁺: 409.1713, found, 409.1714; $R_f = 0.37$ [CH₃OH:10% NH₄OH:CH₂Cl₂(8:2:90)]; HPLC: $t_{\rm R} = 3.82 \text{ min, purity: } 97.83\% [CH_3CN-H_2O-TFA (70:50:0.8\%)].$

3-Apyz-L-His(1-ethyl)-L-ProNH₂ (61): Yield: 47%; colorless solid; mp.: 70-72°C; IR (KBr): 3435, 1634 cm⁻¹, ¹H NMR (CDCl₃): δ 9.18 (bs, 2H), 8.70 (bs, 1H), 8.14 (d, 1H, J = 8 Hz), 7.82 (m,1H, J = 4 Hz,) 7.34 (s, 1H), 6.80 (s, 1H), 5.38 (bs,1H), 4.97 (m, 1H), 4.64 (m, 1H), 3.93 (t, 2H, J = 16 Hz), 3.63 (m, 2H), 3.05-3.31 (m, 2H), 2.28 (m, 2H), 2.09 (m, 2H), 1.44 (t, 3H, J = 2.8 Hz); ¹³C NMR (100 MHz, CD₃OD): δ 175.74, 171.23, 162.29, 146.49, 137.62, 136.19, 131.24, 119.1, 60.37, 52.09, 51.23, 32.26, 29.84, 29.34, 29.02, 24.37, 23.63, 15.10; HRMS: m/z calcd for C₁₈H₂₄N₈NaO₃ $[M+Na]^+$: 433.1869, found, 433.1869; $R_f = 0.42$ [CH₃OH:10% NH₄OH:CH₂Cl₂] (8:2:90)]; HPLC: $t_{\rm R} = 4.12$ min, purity: 99.95% [CH₃CN-H₂O-TFA (70:50:0.8%)].

3-Apyz-L-His(1-propyl)-L-ProNH₂ (6m): Yield: 50%; white solid; mp.: 74-75°C IR (KBr): 3429 1638, cm⁻¹; ¹H NMR (CD₃OD): δ 8.14 (d, 1H, J = 4 Hz), 7.83 (d, 1H, J = 4 Hz), 7.56 (s, 1H), 7.04 (s, 1H), 5.04 (m, 1H), 4.48 (m, 1H), 3.94 (t, 2H, J = 7.04 Hz), 3.55 (m, 2H), 3.00-3.15 (m, 2H), 2.22 (m, 2H), 2.02 (m, 2H), 1.79 (m, 3H), 0.87 (t, 3H, J = 7.6 Hz); ¹³C NMR (100 MHz, CD₃OD); δ 175.54, 171.20, 169.94, 165.81, 155.16, 146,49, 137.05, 136.14, 131.11, 60.40, 52.10, 51,24, 29.99, 29.35, 24.39, 9.80; HRMS: m/z calcd for C₁₉H₂₆N₈NaO₃ [M+Na]⁺: 437.2026, found, 437.2020; R_f = 0.50 $[CH_{3}OH:10\% NH_{4}OH:CH_{2}Cl_{2}$ (8:2:90)]; HPLC: $t_{R} = 4.58$ min, purity: 99.92% [CH₃CN-H₂O-TFA (70:50:0.8%)].

CONH

3-Apyz-L-His(1-isopropyl)-L-ProNH₂ (6n): Yield: 50%; white solid; mp.: 57-58 °C; IR (KBr): 3429 1638, cm⁻¹; ¹H NMR (CD₃OD): δ 8.13 (d, 1H, *J* = 2.32 Hz), 7.83 (d, 1H, *J* = 2.36 Hz), 7.66 (s, 1H), 7.11 (s, 1H), 5.01 (m, 1H), 4.90 (m, 1H), 4.46 (m, 1H), 3.50 (m, 2H), 3.01-3.16 (m, 2H), 1.96-2.23 (m, 4H), 1.45 (m, 6H); ¹³C NMR (100 MHz, CD₃OD): δ 175.73, 171.20, 171.63, 166.19, 155.13, 146,50, 136.28, 136.14, 131, 125.83, 115.42, 60.42, 58.89, 55,22, 51.43, 49.43, 31.34, 30.06, 29.99, 28.30, 24.39, 21.99, 21.76; HRMS: *m/z* calcd for C₁₉H₂₆N₈NaO₃ [M+Na]⁺: 437.2026, found, 437.2021; R_f = 0.50 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 4.68 min, purity: 99.84% [CH₃CN-H₂O-TFA (70:50:0.8%)].

3-Apyz-L-His(1-benzyl)-L-ProNH₂ (60): Yield: 50%; light brown solid; mp.: 59-61 °C; IR (KBr): 3430, 1641 cm⁻¹; ¹H NMR (CD₃OD): δ 8.11 (m, 1H), 7.77 (m,1H), 7.64 (s, 1H), 7.25-7.29 (m, 5H), 7.02 (s, 1H), 5.14 (s, 2H), 4.99 (m, 1H), 4.41 (m, 1H), 3.80 (m, 2H), 3.31-3.02 (m, 2H), 2.20 (m, 2H), 1.98 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.58, 170.80, 166.01, 154.09, 146.49, 145.25, 135.44, 131.27, 128.40, 127.39, 126.0, 125.68, 92.17, 78.07, 60.63, 53.33, 50.87, 31.09, 29.39, 24.39; HRMS: *m/z* calcd for C₂₃H₂₆N₈NaO₃ [M+Na]⁺: 485.2026, found 485.2023; R_f = 0.37 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 3.82 min, purity: 97.83% [CH₃CN-H₂O-TFA (70:50:0.8%)].

2-Pip-L-His(1-methyl)-L-ProNH₂ (6p): Yield: 42%; white solid; mp.: 127-128 °C; IR (KBr): 3481, 1645 cm^{-1,}; ¹H NMR (CD₃OD): δ 7.38 (s, 1H), 6.82 (s, 1H), 4.30 (m, 1H), 3.69 (m, 1H), 3.57 (s, 3H), 3.36 (m, 1H), 3.33 (m, 2H), 2.96-3.11 (m, 2H), 2.53 (m, 2H), 3.24 (m, 2H) 1.17-1.190 (m, 8H); ¹³C NMR (100 MHz, CD₃OD): δ 177.08, 175.75, 174.10, 171.32, 137.57, 136.38, 88.89, 60.31, 59.23, 51.33, 45.00, 32.26, 29.81, 29.62, 25.27, 23.77, 23.65; HRMS: *m/z* calcd for C₁₈H₂₈N₆NaO₃ [M+Na]⁺: 399.2121, found, 399.2120; R_f = 0.32 [CH₃OH:10% NH₄OH:CH₂Cl₂ (12:2:88)]; HPLC: *t*_R = 4.30 min, purity: 97.91% [CH₃CN-H₂O-TFA (70:30:0.8%)].

- **2-Pip-L-His(1-isopropyl)-L-ProNH₂ (6q):** Yield: 23%; colorless solid; mp.: 102-103 °C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 7.57 (s, 1H), 7.23 (s, 1H), 5.19 (m, 1H), 4.42 (m, 1H), 3.96 (m, 1H) 3.78 (m, 1H), 3.22 (m, 2H), 2.86-3.14 (m, 2H), 1.28-2.21 (m, 10H), 1.60 (m, 6H); ¹³C NMR (100 MHz, CD₃OD): δ 175.08, 169.94, 136.57, 135, 126.38, 67.31, 64.30, 59.23, 51.33, 45.10, 32.16, 29.81, 29.62, 25.27, 23.77, 23.0; HRMS: *m/z* calcd for C₁₈H₂₈N₆NaO₃ [M+Na]⁺: 427.2540, found, 427.2545; R_f = 0.31 [CH₃OH:10% NH₄OH:CH₂Cl₂ (12:2:88)]; HPLC: *t*_R = 4.54 min, purity: 99.55% [CH₃CN-H₂O-TFA (70:30:0.8%)].
- **5-Hpyz-L-His(1-methyl)-L-ProNH₂ (6r):** Yield: 42%; white solid; mp.: 157-158°C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 8.50 (s, 1H), 8.13 (s, 1H), 7.99 (s, 1H), 7.30 (s, 1H), 5.14 (m, 1H), 4.47 (m, 1H), 3.85 (s, 3H), 3.80 (m, 2H), 3.16-3.22 (m, 2H), 2.30 (m, 2H), 1.96-2.01 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.85, 169.20, 163.08, 161.82,157.07, 146.89, 135.21,132.06, 129..06, 126.36, 121.37, 118.18 115.37, 60.14, 53.41, 50.41, 34.26, 29.69, 27.05, 24.60, 21.17; HRMS: *m/z* calcd for C₁₇H₂₁N₇NaO₄ [M+Na]⁺: 410.1553, found, 410.1552; R_f = 0.20 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 3.86 min, purity: 99.83% [CH₃CN-H₂O-TFA (70:30:0.8%)].

5-Hpyz-L-His(1-ethyl)-L-ProNH₂ (6s): Yield: 33%; white powder; mp.: 143-144°C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 8.56 (s, 1H), 8.16 (s, 1H), 7.83 (s, 1H), 7.46 (s, 1H), 5.18 (m, 1H), 4.57 (m, 1H), 4.15 (m, 2H), 3.70 (m, 2H), 2.99-3.22 (m, 2H), 1.97-2.30 (m, 4H), 1.96-2.01 (m, 2H), 1.45 (t, 3H, J = 7.36 Hz); ¹³C NMR

7

(100 MHz, CD₃OD): δ 175.83, 169.23, 161.83, 161.48, 157.08, 146.88, 134.74, 131.82, 130.71, 119.18, 118.28, 115.53, 60.17, 53.45, 43.75, 29.68, 27.24, 14.42; HRMS: *m/z* calcd for C₁₈H₂₃N₇NaO₄ [M+Na]⁺: 424.1710, found 424.1711; R_f = 0.67 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 3.86 min, purity: 98.73% [CH₃CN-H₂O-TFA (70:30:0.8%)].

- **5-Hpyz-L-His(1-benzyl)-L-ProNH₂ (6t):** Yield: 38%; white powder; mp.: 222-224°C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 8.44 (s, 1H), 7.66 (s, 1H), 7.60 (s, 1H), 7.69 (s, 1H), 7.10-7.23 (m, 5H), 7.10 (s, 1H), 5.18 (s, 2H), 4.98 (m, 1H), 4.35 (m, 1H), 3.80 (m, 2H), 3.01-3.12 (m, 2H), 2.14 (m, 2H), 1.96 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 175.82, 169.08, 162.92, 161.89, 162.24, 161.55, 147.69, 146.85, 135.21, 134.45, 130.03, 127.67, 126.11, 118.17, 60.23, 51.54, 50.21, 33.92, 29.65, 26.89, 24.38; HRMS: *m*/*z* calcd for C₂₃H₂₅N₇NaO₄ [M+Na]⁺: 486.1866, found, 486.1860; R_f = 0.67 [CH₃OH:10% NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 4.56 min, purity: 97.83% [CH₃CN-H₂O-TFA (70:30:0.8%)].
- **6-Hpic-L-His(1-ethyl)-L-ProNH₂ (6u):** Yield: 50%; white powder; mp.: 210-211°C; IR (KBr): 3472, 1646 cm⁻¹; ¹H NMR (CD₃OD): δ 8.75 (m, 1H) 7.44 (s, 1H), 7.37 (s, 1H), 6.81 (s, 1H), 6.79 (m, 1H), 5.16 (m, 1H), 4.87 (m, 1H), 3.82 (m, 2H), 3.49-3.62 (m, 2H), 3.19-3.26 (m, 2H), 2.65 (m, 2H), 1.80 (m, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 177.36, 169.91, 165.47, 140.73, 139.47, 135.66, 127.87, 118.46, 118.17, 114.35, 61.23, 55.70, 49.52, 28.68, 25.52, 23.87; HRMS: *m/z* calcd for C₁₉H₂₄N₆NaO₄ [M+Na]⁺:423.1757, found 423.1756; R_f = 0.37 [CH₃OH:10%, NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 4.32 min, purity: 96.62% [CH₃CN-H₂O-TFA (70:30:0.8%)].
- **6-Hpic-L-His(1-propyl)-L-ProNH₂ (6v):** Yield: 50%; white powder; mp.: 210-211°C; IR (KBr): 3472, 1646 cm⁻¹; ¹H NMR (CD₃OD): δ 8.58 (m, 1H) 7.52 (m, 1H), 7.10 (s, 1H), 6.60 (m, 1H), 6.67 (s, 1H), 5.40 (m, 1H), 4.98 (m, 1H), 3.93 (m, 2H), 3.64-3.47 (m, 2H), 3.06-3.16 (m, 2H), 2.11 (m, 2H), 1.10 (m, 2H), 0.68 (m, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 168.96, 161.91, 161.57, 140.72, 134.76,129.87, 120.46, 118.17, 115.35, 60.23, 50.70, 50.52, 29.68, 26.52, 24.57, 23.02; HRMS: *m/z* calcd for C₂₀H₂₆N₇NaO₄ [M+Na]⁺: 486.1860, found, 486.1862; R_f = 0.37 [CH₃OH:10%, NH₄OH:CH₂Cl₂ (8:2:90)]; HPLC: *t*_R = 4.00 min, purity: 99.60% [CH₃CN-H₂O-TFA (70:30:0.8%)].

6-Hpic-L-His(1-benzyl)-L-ProNH₂ (6w): Yield: 50%; white powder; mp.: 175-176°C; IR (KBr): 3481, 1645 cm⁻¹; ¹H NMR (CD₃OD): δ 8.44 (m, 1H), 7.58 (d, 1H, *J*= 7.28 Hz), 7.23 (s, 1H), 7.20-7.58 (s, 5H), 7.21 (s, 1H), 6.69 (m, 1H) 6.67 (s, 1H), 5.38 (s, 2H), 5.01 (m, 1H), 4.34 (m, 1H), 3.43-3.71 (m, 2H), 2.94-3.17 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 169.45, 162.92, 162.24, 161.89, 161.55, 147.69, 146.85, 135.21, 134.45, 130.10, 127.67, 126.00, 116.17, 60.23, 51.54, 50.21, 33.92, 29.65, 26.89, 24.38; HRMS: *m/z* calcd for C₁₉H₂₄N₆NaO₄ [M+Na]⁺: 486.1960, found, 486.1960; R_f = 0.67 [CH₃OH:10%, NH₄OH:CH₂Cl₂ (8:2:90)] HPLC: *t*_R = 4.56 min, purity: 97.38% [CH₃CN-H₂O-TFA (70:30:0.8%)].

S1. ¹H-NMR Spectrum of 6a

9

S3. HPLC chromatogram of 6a

Sample Information	
Acquired by	: CLM
Sample Name	: 1892
Sample ID	: 1892
Tray#	:1
Vail#	: 12
Injection Volume	: 10 uL
Data Filename	: 1892.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 3:50:48 AM
Data Processed	: 10/1/2012 12:12:32 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1	PDA	A COLUMN	1/75	Correct of	6 * * *
	1.000	CALCULATE DE LA CALCOLICA DE LA	11.44		

PeakTable

PDA	Chl	254nm	4nm
-----	-----	-------	-----

ſ	Pcak#	Ret. Time	Area	Height	Area %
C	1	3.374	1641	251	0.224
Γ	2	3.748	728679	69936	99.547
Γ	3	6.438	1675	130	0.229
Γ	Total		731995	70317	100.000

S4. ¹H Spectrum of 6b

np-1895 PROTON MeOD {D:\FACULTY\RahulJain\2012\sep\NMR} niper 66

S6. HPLC Spectrum of 6b

Sample Information	
Acquired by	: SChhuttan L. Meena
Sample Name	: DBT
Sample ID	: DBT
Tray#	:1
Vail#	: 9
Injection Volume	: 10 uL
Data Filename	: DBT.led
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.lcr
Date Acquired	: 10/1/2012 3:04:14 AM
Data Processed	: 10/1/2012 2:03:05 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Ch1 254nm 4nm				100010	
[Peak#	Ret. Time	Area	Height	Area %
[1	3.143	139763	24096	96.302
[2	3.896	5367	937	3.698
[Total		145130	25033	100.000

S7. ¹H-NMR Spectrum of 6c

S8.¹³C-NMR Spectrum of 6c

S9. HPLC chromatogram of 6c

NIPER

Sample Information	
Acquired by	: Chhuttan . Meena
Sample Name	: NP-1896
Sample ID	: NP-1896
Tray#	:1
Vail#	:7
Injection Volume	: 10 uL
Data Filename	: NP-1896.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B2.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 9/30/2012 6:20:25 PM
Data Processed	: 10/1/2012 2:06:00 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

PDA Ch1 254nm 4nm				
Peak#	Ret. Time	Area	Height	Area %
1	3.737	10005	1658	0.238
2	4.173	4190242	296170	99.762
Total		4200247	297827	100.000

S10. ¹H-NMR Spectrum of 6d

S11. ¹³C-NMR Spectrum of 6d

np-2378 C13CPD512 MeOD {D:\FACULTY\RahulJain\2012\sep\NMR} niper 98

S12. HPLC chromatogram of 6d

NIPER

Sample Information	
Acquired by	: cHHUTTAN l. mEENA
Sample Name	: NP-2378
Sample ID	: NP-2378
Tray#	:1
Vail#	:1
Injection Volume	: 10 uL
Data Filename	: NP-2378.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 1:00:07 AM
Data Processed	: 10/1/2012 2:23:15 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PDA Ch1 254nm 4nm

	1	The second secon	1	1
-	eau	C L	aı	ne
			-	

Peak#	Ret. Time	Area	Height	Area %
1	3.072	4225	374	0.632
2	4.311	662891	45992	99.226
3	5.646	942	109	0.141
Total		668058	46475	100.000

S13. ¹H-NMR Spectrum of 6e

np-1894 PROTON MeOD {D:\FACULTY\RahulJain\2012\sep\NMR} niper 69

S14. ¹³C-NMR Spectrum of 6e

C13CPD512 MeOD {D:\FACULTY\RahulJain\2012\sep\NMR} niper 69

18

NIPER

Sample Information	
Acquired by	: Chhuttan L. Meena
Sample Name	: NP-1894
Sample ID	: NP-1894
Tray#	:1
Vail#	: 8
Injection Volume	: 10 uL
Data Filename	: NP-1894.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lem
Batch Filename	: 30.9.12B2.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 9/30/2012 6:35:58 PM
Data Processed	: 10/1/2012 2:05:16 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

PeakTable

1 PDA Multi 1 / 254mm 4mm

PDA Ch1 254nm 4nm

Peak#	Ret. Time Area		Height	Area %
1	3.768	33318	4701	1.928
2	5.363	1694644	92717	98.072
Total		1727962	97418	100.000

S16. ¹H-NMR Spectrum of 6f

S17. ¹³C-NMR Spectrum of 6f

np-1953 C13CPD512 MeOD {D:\FACULTY\RahulJain\2012\sep\NMR} niper 86 np-1953 NAME EXPNO PROCNO 11 143.2575 142.0847 141.6326 137.6361 136.1143 119.0592 20120929 Date_ Time 2.01 2.01 spect 5 mm PABBO BB-60.3 51.55 48.20 47.34 47.35 47.35 46.90 46.90 47.35 46.90 46.90 46.90 46.90 46.90 46.90 46.90 46.90 46.90 46.90 47.50 46.00 47.50 4 24. INSTRUM PROBHD PULPROG |V|zgpg30 65536 TD SOLVENT NS DS MeOD 512 512 4 24038.461 Hz 0.366798 Hz 1.3631988 sec 20.800 usec 6.50 usec 2.206.3 K 2.0000000 sec 0.03000000 sec 1 SWH FIDRES AQ RG DW DE TE D1 D11 TD0
 CHANNEL fl

 NUC1
 13C

 P1
 9.50 usec

 PL1
 -1.00 dB

 PL1W
 44.90434265 W

 SF01
 100.6228298 MHz
CPDPRG2 Waltz16 waltz16 1H 80.00 usec -2.00 dB 14.33 dB 18.33 dB 14.80958652 W 0.34478071 W 0.13725966 W 400.1316005 MHz 3768 CPDPRG NUC2 PCPD2 PL2 PL12 PL13 PL2W PL12W PL12W PL12W SFO2 ST SI SF 32768 100.6127690 MHz WDW EM 0 1.00 Hz SSB LB GB PC 210 200 190 180 170 160 150 140 130 120 110 100 90 80 40 30 20 10 70 60 50 0 ppm 0 1.40

S18. HPLC chromatogram of 6f

NIPER

Sample Information	
Acquired by	: SChhuttan L. Meena
Sample Name	: DBT
Sample ID	: DBT
Tray#	:1
Vail#	:9
Injection Volume	: 10 uL
Data Filename	: DBT.led
Method Filename	: 70%-B-PLOT-15 MIN.lem
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 3:04:14 AM
Data Processed	: 10/1/2012 2:03:05 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

PeakTable

1 PDA Multi 1 / 254mm 4mm

1	PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %		
1	1	3.143	139763	24096	96.302		
1	2	3.896	5367	937	3.698		
1	Total		145130	25033	100.000		

S19. ¹H-NMR Spectrum of 6g

S20. ¹³C-NMR Spectrum of 6g

S21. HPLC chromatogram of 6g

NIPER

Sample Information	
Acquired by	: chhuttan
Sample Name	: NP-1952
Sample ID	: NP-1952
Tray#	:1
Vail#	: 8
Injection Volume	: 10 uL
Data Filename	: NP-1952.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 2:48:46 AM
Data Processed	: 10/1/2012 2:08:21 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

1	PDA Ch1 254nm 4nm						
Peak# Ret. Time			Area	Height	Area %		
	1	4.098	8404	1367	2.059		
	2	4.422	399858	28497	97.941		
	Total		408263	29865	100.000		

S22. ¹H-NMR Spectrum of 6h

S24. HRMS Spectrum of 6h

Mass Spectrum List Report

Analysis Info

Analysis Name Method Sample Name Comment

5

6

7 8

9

10

١.

270.2651

436.2073

437.2094

438.2118 452.1807

458.1886

20327

17178

20672

21621

22482

21800

647.8

5938.2

2226.2

346.4

267.9

495.3

D:\Data\Rahul jain\12-09-05-NP-1954.d sodium formate tune_low.m NP-1954

Acquisition Date 9/5/2012 2:25:06 PM

Operator VIKAS GROVER Instrument / Ser# maXis 40

Acquisition Parameter Set Nebulizer Set Dry Heater Positive 4500 V -500 V 5.0 Bar Source Type ESI Ion Polarity 180 °C Focus Scan Begin Scan End Not active Set Capillary Set End Plate Offset Set Dry Gas 5.0 l/min 50 m/z 600 m/z Set Collision Cell RF 300.0 Vpp Set Divert Valve Source Intens. x10⁶ 436.207 1.25 1.00 184.1807 0.75 - 211.1915 226.9512 257.1006 270.2651 458.1886 0.50 0.25 0.00 500 200 300 400 m/z 100 +MS, 1.4min #85 FWHM Res. S/N 1 # m/z 0.0100 275348 57808 31904 184.1807 1 18490 3037.5 2 211.1915 19027 602.3 0.0117 339.7 3 226.9512 19466 4 20457 427.6 39693 0.0126 257.1006

0.0133

0.0254

0.0211

0.0203

0.0201

0.0210

63873

1168376

441534

67969

44575

76065

by: イバ 'タリフィ

Sharn: 416 2013

S25. ¹H-NMR Spectrum of 6i

S26. ¹³C-NMR Spectrum of 6i

S27. HRMS Spectrum of 6i

Mass Spectrum List Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Rahul jain\12-09-05-NP-1955.d sodium formate tune_low.m NP-1955

9/5/2012 1:45:11 PM Acquisition Date

Operator Instrument / Ser# maXis

VIKAS GROVER 40

_ #	m/z	Res.	S/N	1	FWHM	
1	127.1229	17232	917.7	75235	0.0074	
2	186.1963	17699	897.1	73929	0.0105	
3	211.1916	18556	620.1	52791	0.0114	
4	257.1003	20027	35.0	3232	0.0128	
5	271.2493	20704	592.0	55640	0.0131	
6	330.1420	21411	141.1	12543	0.0154	
7	337.3074	21057	134.8	12181	0.0160	
8	347.1473	22362	288.6	26628	0.0155	
9	462.2246	22398	222.5	33613	0.0206	
10	484.2072	17916	6885.6	1096984	0.0270	
11	485.2094	21283	2927.9	461309	0.0228	
12	486.2120	22361	503.2	78397	0.0217	
13	506.1884	22942	665.1	80277	0.0221	

in a fir

S28. ¹H-NMR Spectrum of 6j

S29. ¹³C-NMR Spectrum of 6j

NIPER

Sample Information	
Acquired by	: Chhuttan L. Meena
Sample Name	: NP-1855
Sample ID	: NP-1855
Tray#	:1
Vail#	: 2
Injection Volume	: 10 uL
Data Filename	: NP-1855.led
Method Filename	: 70%-B-PLOT-15 MIN.lem
Batch Filename	: 30.9.12B2.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 9/30/2012 5:02:53 PM
Data Processed	: 10/1/2012 2:03:42 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Chl 2				
Peak#	Ret. Time	Area	Height	Area %
1	3.494	1976	324	0.119
2	3.905	1660177	135567	99.881
Total		1662152	135892	100.000

S32. ¹³C NMR spectrum of 6k

S33. HPLC chromatogram of 6k

NIPER

Sample Information	
Acquired by	: CLM
Sample Name	: 1948
Sample ID	: 1948
Tray#	:1
Vail#	: 24
Injection Volume	: 10 uL
Data Filename	: 1948.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 6:57:03 AM
Data Processed	: 10/1/2012 12:18:14 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

Area % 0.044 99.956 100.000

PDA Ch1 254nm 4nm							
Peak#	Ret. Time	Area	Height				
1	3.352	4836	802				
2	4.123	10948132	759238				
Total		10952968	760041				

S34. ¹H-NMR Spectrum of 6l

S35. ¹³C-NMR Spectrum of 6l

34

NIPER

Sample Information	
Acquired by	: Chhuttan L.Meena
Sample Name	: NP-1950
Sample ID	: NP-1950
Tray#	:1
Vail#	:9
Injection Volume	: 10 uL
Data Filename	: NP-1950.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B2.lcb
Report Filename	: sunil C-18.lcr
Date Acquired	: 9/30/2012 6:51:27 PM
Data Processed	: 10/1/2012 2:07:25 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Ch1 254nm 4nm						
Peak#	Ret. Time	Area	Height	Area %		
1	4.115	3194	416	0.074		
2	4.582	4334056	270930	99.926		
Total		4337250	271346	100.000		

S37. ¹H-NMR Spectrum of 6m

S38. ¹³C-NMR Spectrum of 6m

36

NIPER

Sample Information Acquired by Sample Name Sample ID Tray# Vail# Injection Volume Data Filename Method Filename Batch Filename Batch Filename Data Acquired Data Processed Column	: Chhuttan L. Meena : 2381 : 2381 : 1 : 19 : 10 uL : 2381.lcd : 70%-B-PLOT-15 MIN.lcm : 30.9.12B9.lcb : sunil C-18.lcr : 10/1/2012 5:39:26 AM : 10/1/2012 2:00:37 PM · PP.18
Data Processed	: 10/1/2012 2:00:37 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Ch1 2	54nm 4nm		Teakia	ose -
Peak#	Ret. Time	Area	Height	Area %
1	4.112	4778	557	0.156
2	4.607	3057485	183420	99.844
Total		3062262	183977	100.000

S40. ¹H-NMR Spectrum of 6n

S41. ¹³C-NMR Spectrum of 6n

NIPER

Sample Information	
Acquired by	: Chhuttan L. Meena
Sample Name	: 2381
Sample ID	: 2381
Tray#	:1
Vail#	: 19
Injection Volume	: 10 uL
Data Filename	: 2381.led
Method Filename	: 70%-B-PLOT-15 MIN.lem
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 5:39:26 AM
Data Processed	: 10/1/2012 2:00:37 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

156 .844

100.000

PDA Chl 2	54nm 4nm		PeakTa	ble
Peak#	Ret. Time	Area	Height	Area %
1	4.112	4778	557	0
2	4.607	3057485	183420	99
Total		3062262	183977	100

S43. ¹H-NMR Spectrum of 60

S44. ¹³C-NMR Spectrum of 60

40

NIPER

Sample Information	
Acquired by	: CLM
Sample Name	: 1893
Sample ID	: 1893
Tray#	:1
Vail#	: 29
Injection Volume	: 10 uL
Data Filename	: 1893.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 8:14:41 AM
Data Processed	: 10/1/2012 12:16:08 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 215mm 4mm

PeakTable

F	DA Chl 2	15nm 4nm		100010	
Γ	Peak#	Ret. Time	Area	Height	Area %
Γ	1	3.631	14680	2599	0.990
Γ	2	4.301	1444351	77022	97.380
Γ	3	7.082	24185	2189	1.631
Γ	Total		1483216	81809	100.000

S46. ¹H-NMR Spectrum of 6p

S47. ¹³C-NMR Spectrum of 6p

42

S48. HPLC chromatogram of 6p

NIPER

Sample Information	
Acquired by	: chhuttan
Sample Name	: 2380
Sample ID	: 2380
Tray#	:1
Vail#	: 21
Injection Volume	: 10 uL
Data Filename	: 2380.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 6:10:31 AM
Data Processed	: 10/1/2012 1:59:55 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 215mm 4mm

Description of the latter	
Pear Ianie	
1 Can Laute	

1	PDA Ch1 2	15nm 4nm		Tearra	ole l
	Peak#	Ret. Time	Area	Height	Area %
	1	2.532	7695	1460	0.245
	2	3.666	6355	926	0.203
	3	4.543	3121568	131990	99.552
	Total		3135618	134376	100.000

S49.¹H-NMR Spectrum of 6q

S50.¹³ C-NMR Spectrum of 6q

np-2328 C13CPD512 MeOD {D:\FACULTY\RahuUain\2012\sep\NMR} niper 80

S51.HPLC chromatogram of 6q

NIPER

Sample Information	
Acquired by	: Chhuttan L. Meena
Sample Name	: NP-2328
Sample ID	: NP-2328
Tray#	:1
Vail#	: 5
Injection Volume	: 10 uL
Data Filename	: NP-2328.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.lcr
Date Acquired	: 10/1/2012 2:02:11 AM
Data Processed	: 10/1/2012 2:16:32 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

1	PDA Ch1 2	54nm 4nm		reakia	ole
	Peak#	Ret. Time	Area	Height	Area %
	1	3.092	424	141	0.076
	2	3.304	559879	64130	99.924
	Total		560303	64270	100.000

S52.¹H NMRSpectrum of 6r

S53.¹³C-NMRSpectrum of 6r

NIPER

Sample Information	
Acquired by	: Chhuttan L. Meena
Sample Name	: NP-2328
Sample ID	: NP-2328
Tray#	:1
Vail#	: 5
Injection Volume	: 10 uL
Data Filename	: NP-2328.led
Method Filename	: 70%-B-PLOT-15 MIN.lem
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 2:02:11 AM
Data Processed	: 10/1/2012 2:16:32 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Ch1 254nm 4nm														
1	Peak#	Ret. Time	Area	Height	Area %									
1	1	3.092	424	141	0.076									
	2	3.304	559879	64130	99.924									
1	Total		560303	64270	100.000									

S55.¹H-NMR Spectrum of 6s

S56.¹³C-NMR Spectrum of 6s

NIPER

Sample Information	
Acquired by	: Chhuttan L. meena
Sample Name	: NP-2331
Sample ID	: NP-2331
Tray#	:1
Vail#	: 3
Injection Volume	: 10 uL
Data Filename	: NP-2331.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B2.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 9/30/2012 5:18:23 PM
Data Processed	: 10/1/2012 2:17:27 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 224mm 4mm

PeakTable

1	PDA Ch1 2	24nm 4nm		reakia	ote			
ĺ	Peak#	Ret. Time	Area	Height	Area %			
l	1	3.864	2534671	209669	95.546			
	2	4.753	5395	541	0.203			
	3	7.392	2766	132	0.104			
	4	8.163	46045	1415	1.736			
	5	13.211	63938	1156	2.410			
	Total		2652816	212913	100.000			

S58.¹H-NMR Spectrum of 6t

S59. 13C NMR spectrum of 6t

50

S60.HPLCchromatogram of 6t

NIPER

Sample Information	
Acquired by	: Chhuttan L. meena
Sample Name	: NP-2300
Sample ID	: NP-2300
Tray#	:1
Vail#	: 3
Injection Volume	: 10 uL
Data Filename	: NP-2300.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12.lcb
Report Filename	: sunil C-18.lcr
Date Acquired	: 9/30/2012 2:58:58 PM
Data Processed	: 10/1/2012 2:09:21 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Ch1 2	54nm 4nm		reakia	ore
Peak#	Ret. Time	Area	Height	Area %
1	3.357	37	13	0.354
2	3.599	10385	1059	99.604
3	4.806	4	15	0.041
Total		10426	1087	100 000

S61.¹H NMR Spectrum of 6u

S62.¹³C-NMR Spectrum of 6u

NIPER

Sample Information	
Acquired by	: Sunil
Sample Name	: 231
Sample ID	: 231
Tray#	:1
Vail#	: 10
Injection Volume	: 10 uL
Data Filename	: 231.lcd
Method Filename	: 70%-B-PLOT-15 MIN.lcm
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.lcr
Date Acquired	: 10/1/2012 3:19:45 AM
Data Processed	: 10/1/2012 12:26:47 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 254mm 4mm

PeakTable

PDA Chl 254nm 4nm														
	Peak#	Ret. Time	Area	Height	Area %									
	1	3.129	1877	661	0.528									
	2	3.935	353696	38399	99.472									
	Total		355573	39060	100.000									

S64.¹H-NMR Spectrum of 6v

S65.¹³C-NMR Spectrum of 6v

S66.HRMS of 6v

Mass Spectrum List Report

- -----

Analysis Info Analysis Nam	e D:\D)ata\Rah	ul jain\12	2-09-01-NF	P-2301.d	Acquisition D	ate 9/3/2	9/3/2012 4:27:42 PM				
Method Sample Name Comment	sodi NP-;	ium form 2301	ate tune	_low.m			Operator Instrument / S	VIKA Ser# maXi	VIKAS GROVER maXis 40			
Acquisition P	aramete	er										
Source Type Focus Scan Begin Scan End	E N S	ESI Not active 50 m/z 500 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			Positive 4500 V -500 V 300.0 Vp	p	Set Neb Set Dry Set Dry Set Dive	ulizer Heater Gas rt Valve	5.0 Bai 180 °C 5.0 I/m Source	r in
Inter ×1 0	ns. 0 ⁶ .5 50 +	, 100 -MS, 2.9m	in #173	145.1341 00- 	200	8981-1868	01- 	00 00 01482 311.2427		415 2092	450	k k k
# 2 3 4 5 5 2 6 2 7 2 8 3 9 5 2 7 2 8 3 9 0 4 11 4 12 4 11 4 11 12 4 11 11 11 11 11 11 11 11 11 11 11 11 1	m/z 145.1341 146.1370 167.1183 185.1264 237.1868 277.1663 299.1482 311.2427 311.2427 315.2092 145.2092 145.2092 145.2092 145.2092 145.2092	Res. 14803 16786 7229 19527 20251 20332 19283 16261 21936 21543 21894 21330 22730	S/N 4995.9 538.3 6887.6 569.2 906.1 2177.8 2229.4 3843.8 695.8 1923.7 480.1 2570.5 232.0	I 984187 108085 1274659 79399 115816 325200 678424 1179791 96993 474503 152147 719268 30364	FWHM 0.0098 0.0087 0.0231 0.0095 0.0117 0.0136 0.0155 0.0191 0.0163 0.0193 0.0194 0.0205 0.0218			2 * 4	e (1)	- 		

NIPER

Sample Information	
Acquired by	: Sunil
Sample Name	: 2302
Sample ID	: 2302
Tray#	:1
Vail#	: 27
Injection Volume	: 10 uL
Data Filename	: 2302
Method Filename	: 70%-B-PLOT-15 MIN.lem
Batch Filename	: 30.9.12B9.lcb
Report Filename	: sunil C-18.ler
Date Acquired	: 10/1/2012 7:43:40 AM
Data Processed	: 10/1/2012 12:24:30 PM
Column	: RP-18
Flow Rate	: 1.0 mL/min

1 PDA Multi 1 / 215mm 4mm

PeakTable

			Peakraue												
PI	PDA Ch1 215nm 4nm														
Γ	Peak#	Ret. Time	Area	Height	Area %										
Γ	1	3.125	312829	77103	1.817										
Γ	2	3.620	137311	22999	0.797										
Г	3	3.985	16767615	1365261	97.386										
Г	Total		17217755	1465364	100.000										

S70. Receptor binding assay

Material and methods

All of the synthesized peptides were examined for both their affinity for mTRH-R1 and mTRH-R2 and their ability to serve as agonists and their selectivity for the receptors. Twenty-four hour before the experiment (human embryonic kidney cells 293) HEK293 cells stably expressing mTRH-R1 or mTRH-R2, were plated in appropriate cell culture plate 24 well plates. 300,000 Cells per well were seeded and incubated overnight at 37°C. The following day, the cell monolayer was washed 3 times and the plate and buffer were placed on ice for at least 45 min prior the experiment. The plates were kept at 0-4°C and washed once with 1 mL/well of ice cold Hank's Balanced Salt Solution (HBSS) and with 10mM 4-(2hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) without disturbing the cell monolayer. The compounds were added and mixed with [³H]-1-MeTRH (100 µL), TRH analogues (250 µL) at 4 °C before adding in plate (cold), all three-fold dilution in a single well totaling 350 μL (in duplicate). The plates were kept in the cold room in an ice tray up to 4 h and then the supernatant was aspirated and cells were carefully washed three times by adding 1 mL ice cold buffer per well (without disturbing monolayer of cells). 0.4-N NaOH solution (1 mL) was added to it and shaken for 30 min on the shaking platform for cell lysis. In small scintillation vial, 4 mL of scintillation fluids was taken and dispensed with 0.7 mL of lysate. It was shaken using a vortex mixer for 5 sec and placed in the scintillation counter. Affinities, reported as IC₅₀ (μM), were determined as described earlier; briefly by measuring the concentration of the peptides required to displace 50% of 4nM [³H]-1-MeTRH from the mTRH receptor.

S71. Material and method of FLIPRassay

HEK293 cells stably expressing mTRH-R1 or mTRH-R2 were seeded in black-walled, clear-bottomed 96-well plates (Corning, NY) at a density of 6×10^4 cells/well in DMEM (10% FBS, 1% penicillinstreptomycin, 0.1% hygromycin) media and incubated for 24 h at 37°C and 6% CO₂. On the following day, the culture media was replaced with 100 μ L of HBSS supplemented with 20 mM HEPES, pH 7.5 and the cells were loaded with 100 μ L of calcium 3 fluorescent dye (Molecular Devices, Sunnyvale, CA) for 1 h at room temperature before addition of compounds. Transient changes in intracellular (Ca²⁺) induced by ligands were measured. Changes in fluorescence were detected at the emission wavelength of 515–575 nm using FLIPR calcium assay kit according to the manufacturer's recommendation. This kit includes a calcium sensitive dye that is taken into the cytoplasm of the cell during incubation. The kit masking technology remains outside the cell and blocks background fluorescence. Upon ligand binding to the receptor, calcium released into the cytoplasm of the cell, the dye binds to the intracellular calcium and becomes fluorescent; fluorescence is measured by the FLIPRTETRA[®] high throughput cellular screening system (Molecular Devices, Sunnyvale, CA). Data are reported as EC₅₀ (μ M) values. All the results from receptor binding, FLIPR assays are discussed in Table 1.

S72. Material and methods of in vivo reversal of pentobarbital-induced sleeping time assay

Antagonism of pentobarbital-induced sleeping time one of the best trends CNS effects of TRH is its analeptic action manifested by the decrease in barbiturate narcosis. TRH is an effective analeptic agent, which reduces pentobarbital-induced sleeping time by 50% or more following peripheral administration of high doses or central injection of lower doses in rats, rabbits, and monkeys. The all synthesized TRH-like peptides were evaluated *in vivo* by using the antagonism of a pentobarbital induced sleeping time model as described. TRH analogues were injected intravenously through the tail vein at a dose of 10

mmolkg⁻¹ (equivalent to 3.6 mgkg⁻¹ TRH). Ten minutes after administration of the synthesized peptides, each animal received 50 mgkg⁻¹ sodium pentobarbital intraperitoneally. The sleeping time was recorded as the time elapsed from the onset of loss of righting reflex until it returned (Table 2).

S73. Functional Observational Battery

Functional Observational Battery is a systematic study performed to determine the effect of any disease or drug treatment on different functions of central nervous system/functions. This consists of measurement of various behavioral parameters in the home cage, hand held and open field cages. The scoring patterns are a modified form of Irwin's scoring (Hubler et al., 2005; Irwin, 1968). Various functional parameters, which were studied, are summarized in Table 4 and 5.

S74. Statistical analysis

All the values are expressed as mean \pm S.E.M. Statistical analysis was performed using Sigma Stat 2.0 statistical software. Statistical significance for multi group was assessed by using one-way ANOVA followed by Dunnet test. Median was determined in FOB and statistical significance was assessed by Kruskal-Wallis One Way Analysis of Variance on Ranks followed by Dunnet test P<0.05 is considered as statistically significant.

Treatment						TRH 10	µmol/kg			6c- 5 μmol/kg i.v.								
Parameters	0	15	30	60	120	180	0	15	30	60	120	180	0	15	30	60	120	180
	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min
							Home	e cage ob	servatio	n								
Spontaneous	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5
activity level	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)
	Home cage removal & Handling																	
Excitability/	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
handling	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)
reactivity	Copen field Observations (Neuromuscular activity)																	
	Open field Observations (Neuromuscular activity)																	
Landing hind	39.3.±	37.3	37.16	37.89	35.27	34.88	42.61	42.5	39.6	39.88	38.0	38.72	38.22	35.61	37.16	35.77	37.83	35.0
limb foot	0.80	± 0.67	± 0.81	±0.98	± 0.71	± 0.83	±1.09	5 ± 10	1±1.	± 0.78	72±1.	±1.04	± 0.80	± 1.02	±0.81	± 0.83	±1.14	±0.79
splay (mm)								3*	20		04	*						
					-	Open 1	ield Obse	ervation	(Sensor	y respons	se)		-	-	-		-	
Spontaeous	4.0	4.0	4.0	3.5	4.0	4.0	4.5	4.0	4.0	4.0	3.5	3.5	4.5	4.0	4.0	4.0	4.0	4.0
activity level	(4,4)	(4,4)	(4,4)	(3,4)	(4,4)	(4,4)	(4,5)	(4,4)	(4,4)	(4,4)	(3,4)	(3,4)	(4,5)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)
(mm)																		
Auditory	3.0	3.0	3.0	3.0	3.0	3.0	4.0	3.5	3.5	3.0	3.5	3.5	4.0	3.0	3.5	3.5	3.5	3.0
response	(3,4)	(3,3)	(3,3)	(3,3)	(3,4)	(3,4)	(4,4)	(3,4)	(3,4)	(3,4)	(3,5)	(3,5)	(4,4)	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)
Somatosensor	3.0	3.0	3.0	3.0	4.0	3.5	4.0	4.0	4.0	4.0	3.5	4.0	4.0	4.0	4.0	4.0	3.0	3.0
y response	(3,4)	(3,3)	(3,3)	(3,3)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)*	(3,4)	(4,4)	(4,4)	(4,4)*	(4,4)*	(4,4)*	(3,3)*	(3,3)
Visual	3.0	3.0	3.0	3.0	3.0	2.5	3.0	4.0	3.5	3.0	3.5	3.0	3.5	4.0	3.5	3.5	3.0	3.0
approach	(3.3)	(3.3)	(2.3)	(3.3)	(3.3)	(2.3)	(3.3)	(4.4)	(3.4)	(3.4)	(3.4)	(3.3)	(3.4)	(4.4)	(3.4)	(3.4)	(3.3)	(3.3)
11				())	())		())			())								
Olfactory	3.0	3.0	3.0	3.0	3.0	2.5	3.0	3.0	3.5	3.0	3.0	3.5(3,	3.0	3.0	3.0	3.0	3.0	3.0
response	(3,3)	(3,3)	(2,3)	(3,3)	(3,3)	(2,3)	(3,3)	(3,4)	(3,4)	(3,4)	(3,4)	4)*	(3,4)	(3,3)	(3,3)	(3,3)	(3,3)	(3.3)
Arousal	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)

Table 4 Effect of 6c (TRH 10 µmol/kg i.v. and 10 µmol/kg i.v.) on FOB parameters at different time interval

Mice (6) were treated with saline or TRH/ Analogues and observed for 3 hrs. Values are expressed as average of medians of scores (25th, 75th percentile) except Landing hind limb foot splay (mean \pm SEM), * p < 0.05 vs saline using Kruskal-Wallis One Way ANOVA followed by Dunnet test.

Treatment						TRH 10 µ	ımol/kg			6с- 20µmol/kg i.v.								
Parameters	0	15	30	60	120	180	0	15	30	60	120	180	0	15	30	60	120	180
	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min	min
					-	_	Hon	ne cage o	bservatio	n							-	-
Spontaneous	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5	3.0	2.5
activity level	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(3,3)	(2,3)	(2,3)	(3,3)	(3,3)	(3,3)
						H	lome cage	e remova	l & Hand	ling								
Excitability/ 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0																		
handling	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	(2,2)
reactivity																		
						Open fie	ld Observ	vations (Neuromus	scular ac	tivity)							
Landing hind	39.3.±	37.3	37.16	37.89	35.27	34.88	38.2	34.88	$37.05 \pm$	33.88	$34.44\pm$	38.72	40.94	38.05	36.72	37.5	35.55	36.11
limb foot splay	0.80	±0.67	± 0.81	± 0.98	±0.71	±0.83	± 0.80	±0.83	1.23	±0.6*	0.97	±1.04	±1.07	±1.17	±1.28	± 0.83	±0.65	± 0.80
(mm)																		
							Stimulu	s respon	se (Open f	field)								
Landing hind	4.0	4.0	4.0	3.5	4.0	4.0	4.5	4.0	4.0	4.0	3.5	3.5	4.5	4.0	4.0	4.0	4.0	4.0
limb foot splay	(4,4)	(4,4)	(4,5)	(4,4)	(4,5)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)
(mm)																		
Spontaneous	3.0	3.0	3.0	3.0	3.0	3.0	4.0	3.5	3.5	3.0	3.5	3.5	4.0	3.0	3.5	3.5	3.5	3.5
activity level	(3,4)	(3,3)	(3,3)	(3,3)	(3,4)	(3,4)	(4,4)	(3,4)	(3,4)	(3,4)	(3,5)	(3,5)	(4,4)	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)
Somatosensory	3.0	3.0	3.0	3.0	3.5	4.0	3.5	4.0	4.0	4.0	3.5	4.0	4.0	4.0	4.0	4.0	3.0	3.0 (3,3)
response	(3,4)	(3,3)	(3,3)	(3,3)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)*	(4,4)*	(4,4)*	(3,3)*	
-										*								
Visual	3.0	4.0	3.5	3.0	3.5	3.0	3.5	4.0	3.5	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.5 (3,3)
approach	(3,3)	(3,3)	(2,3)	(3,3)	(3,3)	(2,3)	(3,3)	(4,4)	(3,4)	(3,4)	(3,4)	(3,3)	(3,4)	(4,4)	(3,4)	(3,4)	(3,3)	
Olfactory	3.0	3.0	3.0	3.0	3.0	2.5	3.0	3.0	3.5	3.0	3.0	3.5(3.0	3.0	3.0	3.0	3.0	3.0
response	(3,3)	(3,3)	(2,3)	(2,3)	(3,3)	(2,3)	(3,3)	(3,4)	(3,4)	(3,4)	(3,4)	3,4)	(3,4)	(3,3)	(3,3)	(3,3)	(3,3)	(3.3)
												*						
Arousal	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(3,4)	(4,4)	(4,4)	(4,4)	(4,4)	(4,4)

Table 5 Effect of 6c (TRH 10 µmol/kg i.v. and 10 µmol/kg i.v.) on FOB parameters at different time interval

Mice (6) were treated with saline or TRH/ Analogues and observed for 3 hrs. Values are expressed as average of medians of scores (25th, 75th percentile) except Landing hind limb foot splay (mean \pm SEM), * p < 0.05 vs saline using Kruskal-Wallis One Way ANOVA followed by Dunnet test.