Supporting information

Modified Kagan's Amide, Synthesis and Applications as Chiral Solvating Agent for Hydrogen-Bonding Based Chiral Discrimination in NMR

Nilesh Jain, Ravi B. Patel and Ashutosh V. Bedekar*

	Index
CD graph:	2
HPLC chart:	2-3
Spectral chart of compound:	2-18
NMR spectra of CSA:	19-35
Single crystal data:	36-42

CD spectra of (S)-3 & (R)-3 alcohol in Acetonitrile 1×10^{-4} (Blue line for (S)-isomer & Green line for (R)-isomer

HPLC chart of racemic (\pm) -3

HPLC chart of compound (S)-3

HPLC chart of compound (R)-3

¹H-NMR spectra of compound (S)-3 in $CDCl_3$

¹⁹F-NMR spectra of compound (S)-3 in $CDCl_3$

¹³C-NMR spectra of compound (S)-**3** in $CDCl_3$

¹H-NMR spectra of compound (R)-4 in CDCl₃

¹⁹F-NMR spectra of compound (R)-4 in CDCl₃

¹³C-NMR spectra of compound (R)-4 in CDCl₃

¹H-NMR spectra of compound (S)-5 in $CDCl_3$

¹⁹F-NMR spectra of compound (S)-5 in $CDCl_3$

¹³C-NMR spectra of compound (S)-**5** in $CDCl_3$

¹H-NMR spectra of compound (S)-2 in $CDCl_3$

¹⁹F-NMR spectra of compound (S)-2 in $CDCl_3$

¹³C-NMR spectra of compound (S)-2 in $CDCl_3$

¹H-NMR spectra of compound (S)-7 in CDCl₃

¹⁹F-NMR spectra of compound (S)-7 in $CDCl_3$

¹³C-NMR spectra of compound (S)-7 in $CDCl_3$

¹H-NMR spectra of **8a** (R:S ratio,1:2)[top], in presence of (S)-2 [bottom] in CDCl₃

¹H-NMR spectra of **8b** (*R*:*S* ratio,1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8g** (*R*:*S* ratio, 1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8h** (*R*:*S* ratio,1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8i** (*R*:*S* ratio,1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8j** (*R*:*S* ratio,1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **81** (*R*:*S* ratio,1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8m** (*R*:*S* ratio,1:2) [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8n** (*R*:*S* ratio,1:2) in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **80** [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹⁹F-NMR spectra of **80** [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **8p** (*R*:*S* ratio,1:2) in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of (a) blank **8**l (b) in presence of (S)-2 in CDCl₃ (c) in presence of (S)-2 in C_6D_6

¹H-NMR spectra of **9a** [top], in presence of (S)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **9d** [top], in presence of (*S*)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **10b** [top], in presence of (S)-**2** [bottom] in CDCl₃

¹H-NMR spectra in presence of (S)-2 & DABCO in $CDCl_3$ (a) with 11a (b) 11b (c) 11c (d) 11d (e) 11e

Selected region of ¹H-NMR spectra in presence of (S)-2 & DABCO in $CDCl_3$ (a) with 11a (b) 11b (c) 11c (d) 11d (e) 11e

¹H-NMR spectra of **11f** [top], in presence of (S)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **12b** (10% excess in D isomer) in presence of (S)-2 in CDCl₃

¹H-NMR spectra of **12c** in presence of (S)-2 in CDCl₃

¹H-NMR spectra of **12d** [D:L Ratio 2:1] in presence of (S)-2 in CDCl₃

¹H-NMR spectra of **13a** [top], in presence of (S)-**2** [bottom] in CDCl₃

¹H-NMR spectra of **13e** [top], in presence of (S)-**2** [bottom] in CDCl₃

Selected region of ¹⁹F-NMR spectra of **13e** [top], in presence of (S)-**2** [bottom] in CDCl₃

¹H-NMR spectra of 13d (R:S ratio 1:2) [top], in presence of (S)-2 [bottom] in CDCl₃

Selected region of ¹H-NMR spectra of **13f** [top], in presence of (*S*)-**2** [bottom] in CDCl₃

Selected region of ¹⁹F-NMR spectra of **13f** [top], in presence of (*S*)-**2** [bottom] in CDCl₃

Crystal data CCDC NO 1042105

Table 1 Crystal data and structure refinement	
Empirical formula	$C_{17}H_{11}F_6N_3O_5$
Formula weight	451.29
Temperature/K	134(8)
Crystal system	Tetragonal
Space group	I4 ₁ /a
a/Å	19.6845(3)
b/Å	19.6845(3)
c/Å	19.3124(3)
$\alpha/^{\circ}$	90.00
β/°	90.00
$\gamma/^{\circ}$	90.00
Volume/Å ³	7483.13(19)
Z	16
$\rho_{calc} mg/mm^3$	1.602
μ/mm^{-1}	1.403
F(000)	3648.0
2Θ range for data collection	8.98 to 146.12°
Index ranges	$-24 \leq h \leq 20, -23 \leq k \leq 21, -23 \leq l \leq 11$
Reflections collected	10978
Independent reflections	3716[R(int) = 0.0292]
Data/restraints/parameters	3716/0/281
Goodness-of-fit on F^2	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0555, wR_2 = 0.1460$
Final R indexes [all data]	$R_1 = 0.0647, wR_2 = 0.1533$
Largest diff. peak/hole / e Å ⁻³	0.74/-0.47

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for exp_758. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
F17	5004.1(8)	3253.5(8)	243.9(9)	39.0(4)
O10	2175.9(9)	4895.6(9)	-1227.8(8)	26.2(4)
F18	4354.4(9)	2878.2(8)	-562.3(9)	44.9(4)
F19	3926.6(9)	3201.4(8)	405.4(10)	47.7(5)
O28	-316.7(10)	4662.9(12)	-1469.6(10)	42.8(5)
N8	2499.5(10)	5159.6(10)	-139.3(10)	22.6(4)
O31	175.7(11)	3557.9(12)	1475.1(10)	45.5(5)
F13	5088.0(12)	5259.2(18)	-2191.3(10)	97.8(11)
C20	1434.5(12)	4566.9(12)	-320.9(11)	22.4(5)
O30	1234.4(11)	3798.3(11)	1637.8(9)	40.7(5)
N29	723.7(12)	3772.8(12)	1276.9(11)	32.5(5)
C2	3768.7(12)	4445.8(12)	-210.2(12)	23.7(5)
C21	1384.2(12)	4300.1(12)	345.0(12)	24.9(5)
C7	3099.1(12)	5544.9(12)	-354.2(12)	23.0(5)
C22	773.7(13)	4025.6(13)	559.3(12)	26.9(5)
C5	4785.7(12)	4932.6(13)	-1075.0(12)	26.3(5)
C25	871.1(12)	4556.6(12)	-754.8(11)	24.4(5)
N26	-332.1(12)	4301.3(14)	-962.2(11)	38.4(6)
C23	204.5(13)	3998.7(14)	142.3(13)	29.5(5)
C16	4404.3(13)	3350.2(13)	-62.7(14)	31.1(5)
C6	4215.8(12)	5329.3(12)	-935.1(11)	24.0(5)
C4	4846.3(12)	4287.1(13)	-788.7(13)	27.1(5)
F14	5546.8(13)	5792.3(12)	-1384.4(12)	77.9(8)
F15	5853.5(12)	4807.3(14)	-1604.8(16)	95.5(10)
C24	276.2(13)	4277.5(14)	-513.7(12)	28.5(5)
C1	3705.8(12)	5088.6(12)	-502.9(11)	22.0(5)
C11	3264.3(13)	6069.6(13)	196.5(13)	30.2(5)
C9	2077.8(12)	4884.6(12)	-597.9(11)	22.2(5)
C12	5311.8(13)	5197.9(14)	-1567.7(13)	31.0(6)
C3	4336.0(13)	4052.5(12)	-355.9(12)	26.0(5)
O27	-823.7(13)	3978.3(18)	-782.9(14)	79.6(10)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for exp_758. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

	Atom	U ₁₁	\mathbf{U}_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F17		40.4(9)	33.2(8)	43.4(9)	1.3(7)	-15.0(7)	5.6(6)
O10		32.4(9)	33.1(9)	13.0(8)	2.5(6)	1.9(6)	0.6(7)
F18		58.8(11)	28.1(8)	47.8(10)	-9.9(7)	-18.8(8)	6.8(7)
F19		50(1)	34.2(9)	59.0(11)	16.0(8)	13.3(9)	5.6(7)
O28		37.1(11)	67.0(14)	24.4(9)	9.4(9)	-8.4(8)	0.1(10)
N8		25.7(10)	29(1)	13.0(9)	3.2(7)	1.7(7)	1.2(8)
031		42.7(12)	63.8(14)	30(1)	15.7(10)	3.7(9)	-13.3(10)
F13		62.6(14)	208(3)	23.3(10)	17.7(14)	-2.6(9)	-61.5(17)
C20		27.1(12)	25.6(11)	14.5(10)	-0.9(9)	-0.1(9)	2.7(9)
O30		45.8(12)	52.1(12)	24.3(9)	15.6(8)	-9.2(8)	-11.3(9)
N29		38.7(12)	37.9(12)	21(1)	7.5(9)	-1.4(9)	-5.5(9)
C2		26.4(11)	25.9(11)	18.8(10)	-1.1(9)	-1.3(9)	-0.5(9)
C21		28.4(12)	27.1(12)	19.3(11)	2.5(9)	-4.8(9)	0.0(9)
C7		26.9(12)	23.8(11)	18.4(10)	3.9(9)	1.5(9)	2.1(9)
C22		34.3(13)	29.9(12)	16.5(11)	3.9(9)	-0.7(9)	-1.1(10)
C5		26.9(12)	33.4(13)	18.4(11)	-5.7(10)	-1.9(9)	-2.2(10)
C25		28.9(12)	31.2(12)	13.1(10)	0.8(9)	-0.3(9)	1.2(9)
N26		30.4(12)	61.4(16)	23.4(11)	2.7(11)	-5.1(9)	-6.3(11)
C23		30.0(13)	36.6(14)	21.9(12)	1.8(10)	1.4(10)	-5.5(10)
C16		32.1(13)	29.0(13)	32.2(13)	-1.9(10)	-5.2(11)	4(1)
C6		29.3(12)	25.7(12)	17(1)	-1.1(9)	-1.5(9)	-1.5(9)
C4		24.8(12)	31.2(12)	25.2(11)	-7.2(10)	-1.9(9)	3.8(9)
F14		91.9(17)	70.5(14)	71.2(14)	-28.6(12)	49.5(13)	-45.0(13)
F15		60.4(14)	89.5(18)	137(2)	48.1(17)	63.2(16)	30.5(13)
C24		28.8(13)	38.5(14)	18.3(11)	-1.6(10)	-3.8(9)	-1.3(10)
C1		25.8(11)	26.2(11)	14.1(10)	-3.3(8)	-1.5(9)	-1.4(9)
C11		35.1(14)	29.7(13)	25.9(12)	-3.3(10)	4.2(10)	1.7(10)
C9		26.5(11)	24.5(11)	15.6(10)	2.5(8)	0.1(9)	5.9(9)
C12		28.2(13)	42.4(15)	22.5(12)	-5(1)	2.7(10)	-2.8(11)
C3		30.4(12)	25.5(12)	22.2(11)	-3.6(9)	-5.5(9)	0.8(9)
O27		49.6(15)	136(3)	52.9(15)	39.4(16)	-22.7(12)	-48.3(16)

Table 4 Bond Lengths for exp_758.

Atom	Atom	Length/Å Atom	Atom	Length/Å
F17	C16	1.335(3)C21	C22	1.381(4)
O10	C9	1.232(3)C7	C1	1.522(3)
F18	C16	1.343(3)C7	C11	1.518(3)
F19	C16	1.337(3)C22	C23	1.381(4)
O28	N26	1.212(3)C5	C6	1.393(3)

N8	C7	1.463(3)C5	C4	1.391(4)
N8	C9	1.329(3)C5	C12	1.500(3)
O31	N29	1.220(3)C25	C24	1.375(3)
F13	C12	1.288(3) N26	C24	1.479(3)
C20	C21	1.393(3) ^{N26}	O27	1.209(3)
C20	C25	1.390(3) ^{C23}	C24	1.388(3)
C20	C9	1.510(3) ^{C16}	C3	1.500(3)
O30	N29	1.224(3) ^{C6}	C1	1.389(3)
N29	C22	1.476(3) ^{C4}	C3	1.386(4)
C2	C1	1.391(3) ^{F14}	C12	1.307(3)
C2	C3	1.388(3) F15	C12	1.317(3)

Table 5 Bond Angles

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C9	N8	C7	121.74(19)	F17	C16	C3	112.2(2)
C21	C20	C9	122.9(2)	F18	C16	C3	111.1(2)
C25	C20	C21	119.6(2)	F19	C16	F18	106.4(2)
C25	C20	C9	117.5(2)	F19	C16	C3	113.2(2)
O31	N29	O30	124.2(2)	C1	C6	C5	120.5(2)
O31	N29	C22	118.1(2)	C3	C4	C5	118.8(2)
O30	N29	C22	117.8(2)	C25	C24	N26	118.6(2)
C3	C2	C1	119.8(2)	C25	C24	C23	123.6(2)
C22	C21	C20	119.1(2)	C23	C24	N26	117.7(2)
N8	C7	C1	112.38(19)	C2	C1	C7	122.0(2)
N8	C7	C11	109.08(19)	C6	C1	C2	119.3(2)
C11	C7	C1	111.46(19)	C6	C1	C7	118.6(2)
C21	C22	N29	118.1(2)	010	C9	N8	123.6(2)
C23	C22	N29	118.7(2)	O10	C9	C20	119.3(2)
C23	C22	C21	123.1(2)	N8	C9	C20	117.15(19)
C6	C5	C12	118.9(2)	F13	C12	C5	112.9(2)
C4	C5	C6	120.3(2)	F13	C12	F14	106.9(3)
C4	C5	C12	120.7(2)	F13	C12	F15	106.3(3)
C24	C25	C20	118.8(2)	F14	C12	C5	112.6(2)
O28	N26	C24	118.2(2)	F14	C12	F15	104.5(3)
O27	N26	O28	124.1(2)	F15	C12	C5	113.0(2)
O27	N26	C24	117.6(2)	C2	C3	C16	120.6(2)

C22	C23	C24	115.8(2)	C4	C3	C2	121.3(2)
F17	C16	F18	106.5(2)	C4	C3	C16	118.0(2)
F17	C16	F19	106.9(2)				

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³)

Atom	x	у	Ζ	U(eq)
H8	2418	5110	295	27
H2	3432	4280	82	28
H21	1757	4307	641	30
H7	2986	5788	-782	28
H25	896	4735	-1200	29
H23	-201	3806	292	35
H6	4177	5758	-1133	29
H4	5222	4018	-886	32
H11A	2881	6365	260	45
H11B	3651	6332	53	45
H11C	3366	5844	625	45

Experimental

Single crystals of C17H11F6N3O5 were grown in Toluene. A suitable crystal was selected and on a Xcalibur, Eos, Gemini diffractometer. The crystal was kept at 134(8) K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for C17H11F6N3O5 (*M* =451.29): tetragonal, space group I41/a (no. 88), a = 19.6845(3) Å, c = 19.3124(3) Å, V =

7483.13(19) Å3, Z = 16, T = 134(8) K, μ (Cu K α) = 1.403 mm-1, Dcalc = 1.602 g/mm3, 10978 reflections measured ($8.98 \le 2\Theta \le 146.12$), 3716

Unique (Rint = 0.0292) which were used in all calculations. The final R1 was 0.0555 (>2sigma(I)) and wR2 was 0.1533 (all data).