Clusters protected with mixed proteins exhibiting intense photoluminescence

Jyoti Sarita Mohanty, [†] Ananya Baksi, [†] Haiwon Lee and T. Pradeep*

¹DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE),

Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, India

²Department of Chemistry, Institute of Nanoscience and Technology, Hanyang University,

Seoul- 133-791, Korea.

+ Contributed equally

Content

S/N	Description	Page Number
S1	Comparative MALDI MS of BSA and ~Au ₃₀ @BSA	2
S2	Comparative MALDI MS of $\sim Au_{30}$ (@BSA, Au_{10} @Lyz and Au_{QC} @BSA-Lyz at lower mass region	3
S3	MALDI MS of Lyz shows the aggregate formation	4
S4	MALDI MS of Au ⁺ -Lyz adduct showing multiple Au attachments to the parent protein	5
S5	MALDI MS of BSA-Lyz is showing aggregate formation between two proteins	6
S6	XPS survey spectrum of Au _{QC} @BSA-Lyz	7
S7	UV-Vis absorption spectra of Au_{QC} @BSA-Lyz, ~ Au_{30} @BSA and Au_{10} @Lyz	8
S8	Concentration dependent MALDI MS of Ag _{QC} @BSA-Lyz	9

Figure S1: Comparative MALDI MS of BSA and Au_{QC} @BSA showing mass shift of 6 kDa from parent protein after cluster formation. The cluster is assigned as ~ Au_{30} @BSA.

Figure S2: Comparative MALDI MS of \sim Au₃₀@BSA, Au₁₀@Lyz and Au_{QC}@BSA-Lyz at lower mass region showing a few Au attachments to Lyz along with other fragments.

Figure S3: MALDI MS of Lyz is showing aggregate formation. Up to hexamer is clearly visible.

Figure S4: MALDI MS of Au⁺-Lyz adduct showing multiple Au attachments to the parent protein with a separation of m/z 197 due to Au. Corresponding double charge state was also observed with m/z ~ 99 separation due to Au²⁺.

Figure S5: MALDI MS of BSA-Lyz is showing aggregate formation between two proteins.

Figure S6: XPS survey spectrum of Au_{QC} @BSA-Lyz is showing the presence of respective elements. The S 2p region is expanded in the inset.

Figure S7: UV-Vis absorption spectra of Au_{QC} @BSA-Lyz is showing a hump at 510 nm which was originally absent for individual clusters, $\sim Au_{30}$ @BSA and Au_{10} @Lyz.

Figure S8: Concentration dependent MALDI MS of Ag_{QC} @BSA-Lyz showing linear dependence of Ag concentration and number of core Ag atoms.