Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary data

Toughening of Amorphous Poly(propylene carbonate) by Rubbery CO₂-based

Polyurethane: Transition from Brittle to Ductile

Guanjie Ren^{ab}, Yuyang Miao^a, lijun Qiao^a, Yusheng Qin^{*a}, Xianhong Wang^{**a}, Fosong Wang^a

^a Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

^b University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China

* CORRESPONDING AUTHOR: Dr. Yusheng Qin

Fax: +86 431 85262252; Tel: +86 431 85262252; E-mail: ysqin@ciac.ac.cn

** CORRESPONDING AUTHOR: Prof. Xianhong Wang

Fax: +86 431 85689095; Tel: +86 431 85262250; E-mail: xhwang@ciac.ac.cn

Contents:

Gernal information

Fig. S1. FTIR of CO₂-based diol and PCO₂PU2

Fig. S2. ¹HNMR of PCO₂PU2

Fig. S3. ¹³CNMR of PCO₂PU2

Fig. S4. Dynamic frequency sweeps of PPC and PPC/PCO₂PU1 with various compositions at 1% strains. (a) G', (b) G'', (c) $|\eta^*|$

Fig. S5. Dynamic frequency sweeps of PPC and PPC/PCO2PU2 with various compositions at 1% strains. (a) G', (b) G'', (c) $|\eta^*|$

Table S1. Diameters of PPC/PCO₂PU blends with various loadings

Gernal information

FT-IR spectra of the samples were recorded on a Bruker TENSOR-27 spectrophotometer with spectral resolution of 2 cm⁻¹, where the sample solutions were casted onto a KBr disk and

dried in vacuum at room temperature. NMR spectra were collected at ambient temperatures using a Bruker ARX-300 spectrometer at room temperature in deuterated chloroform (CDCl₃). Rheological measurements were performed at 140 °C using a AR 2000 (TA, USA) rheometer with a parallel plate geometry and 25 mm plate diameters. The dynamic frequency sweeps were performed from 0.01 to 100 rad/s at a small strain of 1% within the linear viscoelastic zone. The rubber particle size from the TEM was calculated using Nanomeasure software. The number and weight average rubber particle sizes were calculated using the following equations.

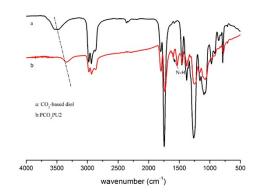


Fig. S1. FTIR of CO₂-based diol and PCO₂PU2

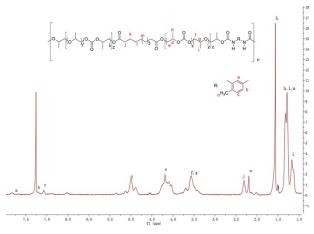
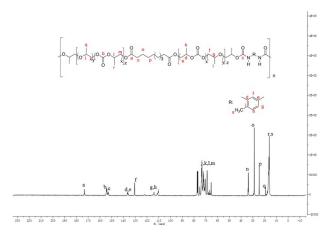
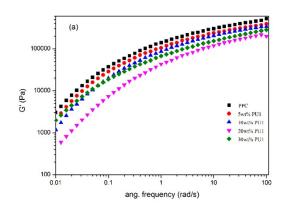
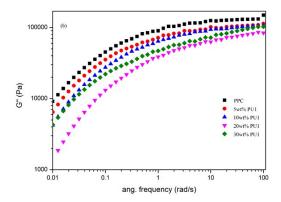
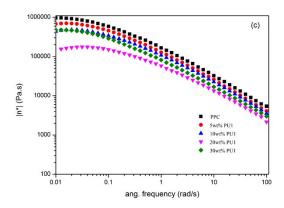
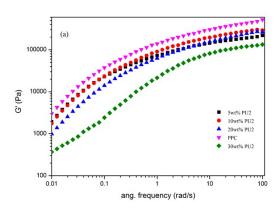
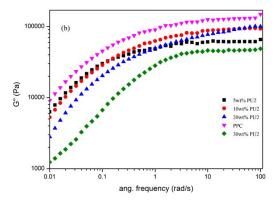


Fig. S2. ¹H NMR of PCO₂PU2


Fig. S3. ¹³C NMR of PCO₂PU2



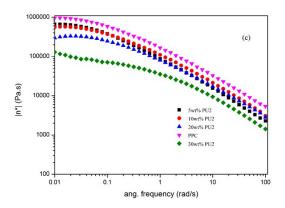


Fig. S4. Dynamic frequency sweeps of PPC and PPC/PCO₂PU1 with various compositions at 1% strains. (a) G', (b) G'', (c) $|\eta^*|$

Fig. S5. Dynamic frequency sweeps of PPC and PPC/PCO₂PU2 with various compositions at 1% strains. (a) G', (b) G'', (c) $|\eta^*|$

Table S1. Diameters of PPC/PCO₂PU blends with various loadings

	Wr	$D_{\rm n}(\mu{\rm m})$	$D_{\mathrm{w}}(\mu\mathrm{m})$	$D_{ m w}/D_{ m n}$
PPC/PCO ₂ PU1	10%	0.058	0.066	1.13
PPC/PCO ₂ PU1	15%	0.088	0.091	1.03
PPC/PCO ₂ PU1	20%	0.163	0.202	1.23
PPC/PCO ₂ PU2	10%	0.049	0.052	1.06
PPC/PCO ₂ PU2	15%	0.051	0.056	1.09
PPC/PCO ₂ PU2	20%	0.100	0.111	1.11