Electronic Supplementary Information (ESI)

Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of biomass hemicellulose fraction

Ana V. Carvalho,^{1,2} André M. da Costa Lopes^{1,2} and Rafał Bogel-Łukasik^{1*}

¹ Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, 1649-038 Lisboa, Portugal,

² LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

* Corresponding author: phone: +351210924600 ext. 4224; fax: +351217163636; email: rafal.lukasik@lneg.pt

1. Statistical modelling

The pre-treatment reaction conditions for production of xylose and furfural were subject of statistical modelling. In order to optimise the effect of the principal independent variables (temperature (X_1) and time (X_2)) on efficiency of xylan hydrolysis into xylose (Y_1) and arabinan and xylan to furfural (Y_2) , the Doehlert experimental designs were employed as presented in Tables 1, 2 and 3.

Т	t	Coded levels (xylose)		Coded levels (furfural		
(°C)	(min)	X_1	X_2	X_1	X_2	
85	113.3	-0.67	+0.87	-	-	
100	70.0	-0.33	0.00	-	-	
115	26.7	0.00	-0.87	-1.00	-	
115	113.3	0.00	+0.87	-1.00	0.00	
120	70.0	+0.33	0.00	-0.50	-	
130	156.6	+0.33	-0.50	-0.50	+0.87	
145	26.7	+0.67	-0.87	0.00	-	
143	113.3	+0.67	+0.87	0.00	0.00	
160	70.0		-	+0.50	-0.87	
	156.6	-	-	+0.50	+0.87	
175	63.3		-	+1.00	-1.00	
	163.3	-	-	+1.00	+1.00	
	113.3		-	+1.00	0.00	

Table 1. Pre-treatment temperatures and times studied in this work and respective coded levels for statistical modelling.

Run	Coded w	Response			
Itun	X_1	X_2	Y_{I}		
А	-0.33	0.00	1.9		
В	0.33	0.00	18.9		
С	0.00	0.87	15.4		
D	0.00	-0.87	4.5		
Е	-0.67	0.87	0.0		
F	0.67	-0.87	12.9		
G	0.67	0.87	3.8		

Table 2. Doehlert experimental design applied for the corresponding experimental responses Y_1 (xylan hydrolysis to xylose).

Table 3. Doehlert experimental design applied for the corresponding experimental responses Y_2 (sum of arabinan and xylan conversion to furfural).

Run	Coded v	Response	
	X_l	X_2	Y_2
А	-0.50	-0.87	14.3
В	-1.00	0.00	3.1
С	0.00	0.00	26.1
D	1.00	0.00	34.4
Е	0.50	0.87	36.2
F	0.50	-0.87	30.7
G	-0.50	0.87	23.4
Н	1.00	1.00	15.6
Ι	1.00	-1.00	30.6

The statistical significance of estimated effects on both Y_1 and Y_2 responses was checked by analysis of variance (ANOVA) presented in Table 4. The p-values indicated the statistical significance (p<0.05) of the estimated relations between variables within a 95 % confidence interval for obtained coefficients. Model analysis by the coefficient of multiple determinations (R^2) indicated that the relevance of the dependent variables in the model was well fitted to explain the behaviour variation because R^2 value is near the unity.

Model parameters (MP)	Y_{I}	!	Y_2		
mouel pur uniciers (mi)	MP	р	MP	р	
β_0	13.82	0.01	30.16	0.00	
β_{I}	19.77	0.02	12.89	0.01	
β_2	7.04	0.04	2.81	0.40	
β_{12}	-18.29	0.03	-7.94	0.12	
eta_{II}	-32.00	0.03	-13.70	0.05	
eta_{22}	-5.19	0.16	-3.36	0.49	
F-tes	t				
Effectiveness of the parameters	16.23		5.49		
Significance level	0.06		0.06		
R ²	0.9	9	0.93		

Table 4. Parameters of the polynomial models representing the studied response Y_1 (xylan hydrolysis to xylose) and Y_2 (hemicellulose sugar hydrolysis to furfural); The adequacy of the models to fit the sets of data was performing using Fisher test (F-test) for the effectiveness.

2. Optimisation results

The experimental results at the optimum conditions for both xylose and furfural formation are shown in Tables 5 and 6.

Table 5. Analysis of the liquid fraction produced in experiments performed at the optimum conditions for xylose and furfural production.

$T(\circ C)$	<i>t</i> (min)	Yield (% w/w) of								
<i>I</i> (C)		xylose ^a	arabinose ^b	furfural ^c	glucosed	HMF ^e	acetic $\operatorname{acid}^{\mathrm{f}}$	formic acid ^g	levulinic acid ^h	
125	82.1	16.7	10.9	7.6	0.9	1.1	40.8	0.0	0.0	
161	104.5	0.0	0.0	30.7	0.9	1.4	67.9	0.9	2.1	
	a)	[: [xylan] ₁	xylose] intreated biomas	- × 100	b)	[ar	[arabions abinan] _{untrea}	se]×10 ted biomass	0 ; c)	
	[[glucan	glucose]] _{untreated b}	× 100	d)	([xyld	[[] [] + [ar	[furfural] rabinan]) _{untre}	ated biomass	00 ; e)	
	[glucan	[HMF]] _{untreated b}	× 100 iomass ;	f)	[acetyl g	[acetic acid] roups] _{untreate}	× 100 d biomass	; g)	

$$\frac{[formic \ acid]}{([xylan] + [arabinan] + [glucan])_{untreated \ biomass}} \times 100$$

$$\frac{[levulinic \ acid]}{([xylan] + [arabinan] + [glucan])_{untreated \ biomass}} \times 100$$

Table 6. Analysis of the solid produced from wheat straw pre-treatment at optimum conditions for xylose and furfural production obtained from statistical modelling.

<i>T</i> (°C)	<i>t</i> (min)	Solid composition (% w/w) ^a						Total recovery yield (%) of		
		xylan	arabinan	acetyl	glucan	lignin	ash	SY (%)	hemicellulose	cellulose
125	82.1	12.4	0.3	0.5	55.3	20.1	6.1	64.4	54.5	81.1
161	104.5	0.0	0.0	1.0	47.5	40.5	6.4	62.8	38.4	71.4

a) The oven-dried solid phase composition; SY \neg solid yield

h)

Figure 1. CE electropherograms recorded at 270 nm demonstrating the detection and separation of [bmim][HSO₄], furans and sugars of standard solution (red) and liquid phase from a pre-treatment sample (black). Analytes: 1) [bmim][HSO₄]; 2) furfural; 3) HMF; 4) sucrose (internal standard); 5) cellobiose; 6) unidentified compound; 7) glucose; 8) arabinose; and 9) xylose.

Figure 2. HPLC chromatogram acquired with refractive index detector demonstrating the separation of [bmim][HSO₄], sugars and organic acids of liquid phase from a pre-treatment sample. Analytes: 1) formic acid; 2) acetic acid; and 3) levulinic acid.