Electrochemical detection of pathogenic *Escherichia coli* specific DNA sequence based on graphene oxide- chitosan composite decorated with nickel ferrite nanoparticles Ida Tiwari, Monali Singh, Chandra Mouli Pandey, Gajjala Sumana

Supplementary information

Figure S1 Raman spectra of (A) GO (B) GO/NiF/ch nanocomposite

Figure S2 TGA spectra of (i) GO (ii) GO/NiF/ch nanocomposite

Figure S3 Comparisan of cyclic voltamogram of (i) GO/NiF/ch/ITO electrode and (ii) pDNA/ GO/NiF/ch/ITO electrode in PBS (100 mM, pH 7.4, 0.9% NaCl) solution containing 5 mM [Fe(CN)₆

Figure S4 DPV response of pDNA/ GO/NiF/ch/ITO bioelectrode incubated with (i) non complementary, (ii) pDNA (iii) one base mismatch sequence (iv) complementary

Figure S5 Bar diagram showing DPV response of pDNA/ GO/NiF/ch/ITO bioelectrode incubated with the culture samples of water borne pathogens

Figure S6 (A) Percentage change in peak current of the fabricated pDNA/ GO/NiF/ch/ITO bioelectrode towards *E. coli* O157:H7 detection every five days (B) Bar diagram showing the stability of the fabricated pDNA/ GO/NiF/ch/ITO bioelectrode

S.	Modified electrode	Detection	Detection limit	Detection range	Response	Reference
No		techniques			time	
1.	chitosan/Fe ₃ O ₄	EIS	3.59×10 ⁻¹³ M	1.0×10^{-12} to 1.0×10^{-6}	-	1
	/graphene/ carbon					
	ionic iiquid					
2	Labal free	EC	5 10 -8M	0.21.25 - 10-614		2
<u> </u> 2.	DNA /madward	F5	5 X 10 °M	0.31–2.3 X 10°M	-	2
	DNA/reduced					
2	Graphene/IONDg/obj	EIS	$1 \times 10^{-14} M$	1.0×10^{-14} to 1.0×10^{-6}		2
5.	t	E15		M	-	5
4.	Ph-NH ₂ /GO/GCE	EIS	0.11 x 10 ⁻¹² M	0.001-10 ⁻⁷ M	-	4
5.	CeO ₂ /Chit/GCE	DPV	10 x 10 ⁻¹² M	0.0159–0.116 × 10 ⁻⁹ M	25 min	5
6.	4-ATP/AuNPs/Au	DPV	9.5 x 10 ⁻¹² M	0.014 x 10 ⁻⁹ M	-	6
7.	PPy-PANi-GA/GE	DPV	5.0×10 ⁻¹⁴ M	1.0	-	7
				×		
				10^{-13} to 1.0		
				×		
				10 ⁻⁹ M		
8.	Au NRs–rGO/GCE	DPV	3.5×10 ⁻¹⁵ M	1.0	50 min	8
				×		
				10^{-14} to 1.0		
				X		
				10 ⁻⁹ M		
9.	GO-CHI/ITO	EIS	$1.0 \ge 10^{-15} M$	$1.0 \ge 10^{-15} \text{M}$ to 5.0 x	60 s	9
				10 ⁻⁸ M		
10.	Carboxyl	DPV	1.69×10 ⁻¹³ M	$1.0 \times 10^{-12} - 1.0$		10
	functionalized			X	4 hr	
	graphene			10 ⁻⁶ M		
11.	GO/NiF/ch	DPV	$1 \times 10^{-16} \text{ M}$	1 x 10 ⁻⁶ to 1 x 10 ⁻¹⁶ M		Present
					60 s	work

Table ST1 Comparison of response characteristics of pDNA/GIOCh/ITO bioelectrode with other DNA sensors

Table ST2 Comparison of response characteristics of pDNA/GIOCh/ITO bioelectrode with other *E.coli* DNA sensors

S.No	Modified	Detection	Detection	Detection	Reference
	electrode	technique	limit	range	
1.	octadecanethiol	DPV	5×10 ⁻¹⁹ M	0.5×10^{-18} to	11
	(ODT)/ITO			1×10 ⁻⁶ M.	
3.	GOx-Thi-	Amperometry	1 x 10 ⁻¹¹ M	2 x 10 ⁻¹¹ to	12
	Au@SiO2			50.0 x 10 ⁻⁷ M	
4.	SH-	DPV	1 x 10 ⁻¹² M	$1 \ge 10^{-12}$ to 1	13
	DNA/MCH			x 10 ⁻⁷ M	
5.	GO/NiF/ch	DPV		1 x 10 ⁻⁶ to 1 x	Present work
				10 ⁻¹⁶ M	

- 1. W. Sun, X. Qi, Y. Chen, S. Liu and H. Gao, *Talanta*, 2011, **87**, 106-112.
- 2. Y. Shi, W. T. Huang, H. Q. Luo and N. B. Li, Chem. Comm., 2011, 47, 4676-4678.
- 3. I. Tiwari, M. Singh, C. M. Pandey and G. Sumana, *Sens. Actuators*, *B*, 2015, **206**, 276-283.
- 4. Y. Hu, F. Li, D. Han, T. Wu, Q. Zhang, L. Niu and Y. Bao, *Anal. Chim. Acta*, 2012, **753**, 82-89.
- 5. K.-J. Feng, Y.-H. Yang, Z.-J. Wang, J.-H. Jiang, G.-L. Shen and R.-Q. Yu, *Talanta*, 2006, **70**, 561-565.
- 6. G.-j. Li, L.-h. Liu, X.-w. Qi, Y.-q. Guo, W. Sun and X.-l. Li, *Electrochim. Acta*, 2012, **63**, 312-317.
- 7. S. Radhakrishnan, C. Sumathi, V. Dharuman and J. Wilson, *Anal. Methods*, 2013, **5**, 1010-1015.
- 8. Y. Zhang and W. Jiang, *Electrochim. Acta*, 2012, **71**, 239-245.
- 9. A. Singh, G. Sinsinbar, M. Choudhary, V. Kumar, R. Pasricha, H. N. Verma, S. P. Singh and K. Arora, *Sens. Actuators, B*, 2013, **185**, 675-684.
- 10. W. Sun, Y. Zhang, X. Ju, G. Li, H. Gao and Z. Sun, Anal. Chim. Acta, 2012, 752, 39-44.
- 11. C. M. Pandey, R. Singh, G. Sumana, M. K. Pandey and B. D. Malhotra, *Sens. Actuators, B*, 2011, **151**, 333-340.
- 12. Y. Li, J. Deng, L. Fang, K. Yu, H. Huang, L. Jiang, W. Liang and J. Zheng, *Biosens. Bioelectron.*, 2015, **63**, 1-6.
- 13. K. Li, J. Huang, G. Shi, W. Zhang and L. Jin, Anal. Lett., 2011, 44, 2559-2570.